REPUBLIC OF GHANA

MINISTRY OF FOOD AND AGRICULTURE

WEST AFRICAN AGRICULTURAL TRANSFORMATION PROGRAM (WAATP)

PEST MANAGEMENT PLAN (PMP)

DRAFT REPORT

June, 2018

TABLE OF CONTENTS

TA	ABLE (OF CONTENTS	1
LI	ST OF	ABBREVIATIONS	4
ΕX	KECUT	TIVE SUMMARY	6
1.		INTRODUCTION	10
	1.1. 1.2. 1.3. 1.4.	Context of ProgramObjectives of the PMP	11 11
2.		DESCRIPTION OF THE PROGRAM	13
	2.1. 2.2. 2.3. 2.4.	Program Development Objective (PDO)	
3. M.	ANAG!	POLICY, LEGAL AND INSTITUTIONAL FRAMEWORK FOR PEST/ DISEMENT	
	3.1. 3.1.1.	Policy framework Environmental policy	18
	3.1.2.	Health policy and environmental hygiene	18
	3.1.3.	National plant protection policy	18
	3.2. 3.2.1.	Legislative and regulatory framework National legal instruments relevant to pest management	
	3.2.2.	International legal instruments	20
	3.2.3.	Common Regulatory at ECOWAS level	21
	3.2.4.	International Code of Conduct on Pesticide Management (Rome 2014)	22
	3.2.5.	FAO guidelines for locust control	22
	3.2.6.	Operational Policy 4.09 on Pest Management	22
	3.3.	Institutional Framework	23
	3.3.1.	Ministry of Environment, Science, Technology and Innovation (MESTI)	
	3.3.1.	l Environmental Protection Agency (EPA)	
	3.3.2.	Ministry of Food and Agriculture (MoFA)	
	3.3.3.	3.3.2.1 Plant Protection and Regulatory Services Directorate (PPRSD) 3.3.2.2 Directorate of Crop Services (DCS) 3.3.2.3 Veterinary Services Directorate 3.3.2.4 Directorate of Agricultural Extension Services Ministry of Health (MoH)	25 26
	3.3.4.	3.3.3.1 Ghana Health Services 3.3.3.2 Food and Drugs Authority Ministry of Finance and Economic Planning (MoFEP)	27
	3.3.5.	3.3.4.1 Ghana Revenue Authority- Customs Division	28
	3.3.6.	Research institutes	28

	<i>3.3.7</i> .	Specialized laboratories	29
	3.3.8.	Phytosanitary products manufacturing companies	30
	3.3.9.	Agricultural Professional Organizations and Civil Society	30
	3.3.10.	Professionals in the Phytosanitary Sector	31
	3.3.11.	Distributors and Carriers	31
	3.3.12.	Resellers or Distributors	31
	3.3.13.	Pesticide Users	31
	3.3.14.	Agricultural Extension Dissemination	31
	3.4. <i>3.4.1.</i>	Regulatory and Institutional Gap Analysis Legislative and regulatory Gap	
	3.4.2.	Institutional Capacity Gaps	32
4. M.		DIAGNOSIS OF THE CURRENT SITUATION OF PEST AND PESTICIDES EMENT IN GHANA	33
	4.1. <i>4.1.1.</i>	Agricultural background	
	4.1.2.	Major insect pests and diseases of Cereals – Maize, Rice and Sorghum	36
	4.1.3.	Major insect Pests of Legume- Soybean	40
	4.1.4.	Major Insect Pests and Diseases of Vegetables- Pepper Okra & Tomato	40
	4.1.5.	Seed borne pests identified in the Seed Laboratory	43
	4.1.6.	Common pests' problems	43
	4.1.7.	Major Pests and disease encountered in animal production-small ruminants-poultry	-cow
		44	
	4.2. 4.3. 4.4. 4.4.1.	Public health context: Malaria Pesticides used in program areas Developed Strategies for Crop Pest Control and Animal Production Integrated Pest Management Approaches	45 47
		4.4.1.1Preventive fight.	
		4.4.1.2 Curative fight	48
	4.5. 4.6.	Alternatives to pesticidesPesticide management approaches	
	<i>4.6.1.</i>	Pesticide distribution channels	
	4.6.2.	Pesticide storage devices	51
	4.6.3.	Application methods of phytosanitary products	51
	4.6.4.	Disposal device for obsolete pesticides and empty containers/packaging	52
		4.6.4.1. Obsolete and expired pesticides	
	4.7.	4.6.4.2. Packaging/containers management at the farmer level Pest management option for target crops: Cereal; vegetable, root and tuber	
		4.7.1.1. Cereals- rice, maize and sorghum	
		4.7.1.2. Pepper, okra and tomato	
5.		4.7.1.3. Root and Tuber crops-Cassava, Yam and Sweet potato	

	5.1.	Critical steps in pesticides management	
	5.2.	Populations at risk	
	5.3. 5.4.	Negative impacts on the environment	
	5.5.	Assessment of knowledge and practices in pesticide management - public consult	
	5.6.	66 Synthesis of minimization of the negative impacts of Pesticides	68
6.		ACTIONS PLAN FOR PEST AND PESTICIDE MANAGEMENT	70
	6.1. <i>6.1.1.</i>	Priority issues identified in the program area On the plan of Institutional, legislative and regulatory	
	6.1.2.	On the plan of capacities of the actors and the awareness of the populations	70
	6.1.3.	On the plan of technical management of pests	70
	6.1.4.	At the level of control and monitoring	
	6.2.	Plan for Integrated Pest Management	71
	6.3. <i>6.3.1.</i>	Participatory Monitoring and Evaluation Plan Activities to monitor	73
	6.3.2.	Reference situation	73
	6.3.3.	Monitoring indicators	73
		6.3.3.1. Strategic indicators to be monitored by the Environmental and Social Uni	
		of the program	
		6.3.3.3. Indicators to be followed by other state institutions	74
	6.3.4.	Responsibilities for monitoring of the PMP	74
	6.3.5.	Evaluation of the plan	75
	6.3.6.	Summary of the monitoring plan	75
	6.4.	Training of actors involved in the pest integrated management	76
	6.5.	Awareness campaigns on pesticide management	
	6.6.	Coordination and monitoring of integrated pest management	
	6.7.	Reporting and review arrangement	78
	6.8. 6.9.	Institutional arrangements for the implementation and monitoring of the PMP Budget of PMP	
CO	NCLU	JSION	81
LI	ST OF	TABLES	83
		PERSONS MET	
		GRAPHY	
	DENID		97

LIST OF ABBREVIATIONS

AESA Alliance for Accelerating Excellence in Science in Africa CAADP Comprehensive Africa Agriculture Development Project

CARGS Competitive Agricultural Research Grant Fund

CLAME Crop Life Africa Middle East
CPPs Chronic Pelvic Pain syndrome
CRIG Cocoa Research Institute of Ghana

CSIR Council for Scientific and Industrial Research
DAES Directorate of Agricultural Extension Services

E.I Executive Instrument

ECOWAS Economic Community of West African States

EFSP Environmental and Social Focal Point EPA Environmental Protection Agency EPC Environmental Protection Council

ER Ecological Restorations

EU's European Union

FAO Food and Agriculture Organization

FASDEP Food and Agriculture Sector Development Policy

FDA Food and Drugs Authority FFS Farmer Field School

GEPC Ghana Export Promotion Council

GHS Ghana Health Service
GoG Government of Ghana
GRA Ghana Revenue Authority
GSA Ghana Standard Authority

GSGDA II Ghana Shared Growth Development Agenda

GTCP Ghana Tree Crop Policy

GTZ/GIZ German Development Cooperation

ICAT Institute of Consulting and Technical Support

ICPM/FFS Integrated Crop and Pest Management Farmers' Field School

IDA International Development Association

IITA International Institute of Tropical Agriculture

IPM Integrated Pest Management

IPPC International Plant Protection Convention
ITRA Togolese Institute of Agronomic Research
IUCN International Union for Conservation of Nature

MDA Ministries, Departments and Agencies
MEAs Multilateral Environmental Agreements

MELR Ministry of Employment and Labour Relations

MESTI Ministry of Environment, Science, Technology and Innovation

METASIP Medium Term Agriculture Sector Investment Plan

MiDA 1 Millennium Development Authority 1

MLGRD Ministry of Local Government and Rural Development

MoFA Ministry of Food and Agriculture

MoH Ministry of Health MRLs Maximum Residue level

NEPAD New Partnerships of Africa Development NPRP National Poverty Reduction Program

NPV Net Present Value

NRC National Research Council
NRGP Northern Rural Growth Project
PFJ Planting for Food and Jobs
PIC Prior Informed Consent
PMP Pest Management Plan
POPs Persistent Organic Pollutants
PPEs Personal Protective Equipments

PPRSD Plant Protection and Regulatory Services Directorate

PTC Pesticide Technical Committee R&D Research and Development

RAFiP Rural and Agricultural Finance Project RAGB Revenue Agencies Governing Board

REP Rural Enterprise Project

RESR Regional Environmental and Social Respondents/EPA SCPOP Stockholm Convention on Persistent Organic Pollutants

SPFS Special Program for Food Security /MoFA
SPS Sanitary and Phytosanitary Agreement
TCP Technical Cooperation Program

TOTs Training of Trainers

UNDP United Nations Development Program

USAID United States Agency for International Development

VAT Value Added Tax

WAAPP West Africa Agricultural Productivity Program
WAATP West Africa Agricultural Transformation Program
WARDA West Africa Rice Development Association

WHO World Health Organization

EXECUTIVE SUMMARY

The Economic Community of West African States (ECOWAS) initiated the West Africa Agriculture Transformation Program (WAATP) with financial support from the World Bank.

In order to contribute to the structural transformation of Ghana's agriculture for a strong, resilient, inclusive and job-creating growth, especially for young people, the Government of Ghana, in collaboration with the CORAF and the World Bank, undertook since 2017, the preparation of the West Africa Agriculture Transformation Program (WAATP) for Ghana.

The overall objective of the WAATP is to accelerate the adoption of improved technologies, creat jobs for youth and strengthen enabling conditions for access to regional markets for the participating countries' priority agricultural commodity areas, and to enable Governments to respond promptly and effectively to eligible emergencies. Specifically, the following objectives are pursued: (i) strengthen the new generation model of innovations in West Africa as part of the transformation of Ghana's National Centers of Excellence into Regional Centers of Excellence (RCoE); (ii) increase agricultural productivity through the acceleration of the massive adoption of technologies; (iii) promote technologies and value-enhancing innovations in agri-silvo-pastoral and fisheries value chains that are likely to create jobs, especially for youth and women, and that can improve food security and increase incomes populations supported by the program; (iv) strengthen the institutional framework, policies and markets; and (v) contribute to the management of crisis management.

To achieve this goal, the Program will be implemented through five (5) components as follows:

- Component 1: Strengthening the new model of Innovation delivery in West Africa
 - ✓ Sub-Component 1.1: Strengthening National Centers of Specialization
 - ✓ Sub-component 1.2: Strengthening of adaptive research (R&D) Priority Value Chains: 1. Cassava, sweet potato, cocoyam, and yam. 2. Maize, rice, sorghum, pearl millet
- Component 2: Accelerating mass adoption of improved technologies and innovations.
 - ✓ Sub-component 2.1: Demand driven market based interventions
 - ✓ Sub-component 2.2: Strengthening the seed sector
 - ✓ Sub-component 2.3: Jobs for the youth
- Component 3 : Policies, markets and institutional strengthening
 - ✓ Sub-component 3.1: Policy formulation and regulation in favour of markets and institutional strengthening
 - ✓ Sub-component 3.2: Regional market development for targeted products.
 - ✓ Sub-component 3.3: National and regional institutional capacity building.
- Component 4 : Contingent emergency response
- Component 5: Program management, learning, monitoring and evaluation.
 - ✓ Sub-component 5.1: Harmonized Coordination and Management
 - Sub-component 5.2: Monitoring and evaluation, Knowledge management Communication

The components 2 and 3 will support improvement in agricultural productivity through mass adoption of climate smart technologies (extension), production and certification of improved seeds and planting materials (maize, rice, cassava, yam, sweet potato etc.), promotion of the use of fertilizers, promotion of safe and responsible use of pesticides, provision of modern infrastructure to ensure access to quality pest control products for optimum results, as well as the regulation of veterinary products in the livestock(small ruminant) and poultry sectors.

The implementation of these components could directly or indirectly, result in increased use of plant protection products or induce the use of pesticides or other pest control methods (pests, diseases and weeds) by farmers for increased productivity.

However, several negative impacts could result from the intensive application of pesticides; namely: the reduction or elimination of bio-control agents or crop aids, contamination of soil, pollution of water resources, health risks and poor management of obsolete packaging and products. These impacts could have serious consequences on farmers' income and the country's food security.

To meet the requirements of a productive and sustainable agriculture that minimizes health and environmental risks, there is the need for Integrated Pest Management approaches to be adopted in order to regulate the potential use of these chemicals to address pest problems and crop diseases. In this respect, and in order to comply with national requirements and the World Bank's environmental and social safeguard policies, in particular OP4.09 on pest management, the Government developed this Pest Management Plan (PMP) to ensure rational use of pesticides in integrated pest and weed control.

The general objective of the Pest Management Plan (PMP) is to prevent or mitigate the impacts of pests and pesticides on human and biological environment and to provide an effective integrated pest control framework.

The plan also highlights the different categories of actors whose roles and modes of involvement have impacts that can differentially influence the effectiveness of environmental and health management. These actors include ministries in charge of, Agriculture (MoFA), Environment (MESTI) ant Health (MoH) as well as private operators, local authorities, laboratories and research institutions, health and environmental NGOs, farmers' organizations, etc.

The political context of the environmental protection and natural resources sector in which WAATP will be implemented is marked by the existence of relevant policies and strategy papers, among other: the Environmental Policy, National Plant Protection Policy; Health Policy and Environmental Hygiene and the Investment Plan for the Agricultural Sector.

On the legislative level, plant protection in Ghana is governed by: (i) Plants and Fertilizer Act, 2010 (Act 803): The Plant and Fertilizer Act of 2010 combines the Seed Inspection and Certification Order, NRCD 100 of 1972, and the Pest and Plant Disease Prevention and Control Act 307 of 1965. The law provides for effective plant protection to prevent the introduction and spread of pests and diseases to regulate the import and export of plants and planting material; the regulation and control of exports, imports and commercial transactions in the seed sector and related matters; and the control and regulation of the fertilizer trade; (ii) the Prevention & Control of Pests and Diseases of Plants Act, 1965 (Act 307); (iii) the Environmental Protection Agency Act, (Act 490) of 1994, an act to amend and consolidate the law relating to environmental protection, pesticides control and regulation and for related purposes. The Act provides rules for registration, manufacturing, use, disposal and non-disclosure of information, classification, licensing, reporting, labelling and inspections of pesticides. This law addresses the registration of all pesticides prior to their use in Ghana.

In addition, Ghana has signed and ratified several international legal instruments relating to chemicals.

In WAATP's intervention zone, several crops are grown, including those supported by the program: cereal crops (maize, rice, soya bean, sorghum), roots and tubers (cassava, yam, sweet potato) and market gardening (tomatoes peppers, okra, onion, etc.) and the rearing of small ruminants and poultry. The main pests of the target crops that occur in this area are: Variegated grasshopper, *Zonocerus variegatus* (Cassava), Termites, *Microtermes spp.* (Yam) and Armyworms (*Spodoptera exempta*) (maize, rice, sorghum). With regard to animal diseases, the Newcastle disease and the Infectious bursal disease (Gumboro) affect poultry; Anthrax and Blackleg are a disease that affects small ruminants (sheep, goats).

Discussions with some stakeholders demonstrated the use of pesticides for the treatment of these pests in target crops and storage facilities for agricultural products in the Program area. The vast majority of farmers systematically resort to chemical pesticides to control pests.

Most farmers use unregistered pesticides. The main reason for using these unregistered pesticides includes:

- relatively lower cost compared to registered pesticides;
- their availability (sold on local markets);
- insufficient technical training and difficulties in effective control of indiscriminate use of pesticides;
- difficult access to registered pesticides (in terms of proximity).

Therefore, this PMP pays special attention to the following aspects:

- information, awareness-raising, capacity building for the various actors in the target crops sector on responsible and effective methods of using plant protection products in general, and integrated pest management approaches (IPM) in particular,
- appropriate equipment and infrastructural support,
- application of certain regulatory provisions.

The main hazards associated with the use of pesticides in the implementation of WAATP are:

- **Human intoxication**: in most cases, many users of pesticides neglect or ignore the risks and dangers of pesticides. Therefore, they manipulate them without any precaution causing risks of poisoning;
- **Animal intoxication:** Pesticides also kill other non-target insects and birds that may be natural predators of pests. Similarly, water polluted by pesticides becomes dangerous for terrestrial (domestic and wild) and aquatic animals with the phenomenon of bioaccumulation thus endangering the entire food chain.
- Water pollution: Water is the main collector of surplus of pesticides. The principal lakes or
 rivers can thus be environmental components liable to be polluted leading to pollution of
 water table and thus of entering of the pesticides in the food chain;
- **Soil pollution:** pollution of soils through increased use of pesticides contributes to kill both harmful insects and microorganisms in soils. However, these microorganisms are important for removing soil nutrient deficiencies and stimulating respiratory and mineralization activities;

Air pollution: air pollution through increased use of pesticides has negative impacts on the quality of air. It could cause respiratory problems. It could also impact negatively beekeeping activities by reducing population of bee.

Under the WAATP, guidance on pest management will be based on Integrated Pest Management (IPM) approach. This approach recommends the association of all possible and useful control methods against pests while considering the use of chemical pesticides as a last resort. Thus, several control methods are available: biological control; agronomic control, reasoned chemical control, varietal selection; mechanical, genetic and legislative fight. They will have to be conducted under a preventive or curative fight and encourage farmers to make IPM decisions using agro-ecosystem analysis (AESA).

For targeted crops, an overview of the protocols recommended in the program, the suitable pesticides and the motivation for choosing them are given in the document. It should be noted that the

recommended pesticides are selected from the list of phytosanitary products approved by World Health Organization and registered in Ghana.

The diagnosis of the pest situation and the use of pesticides in the WAATP intervention area requires development of an Action Plan to deal with the negative impacts of the use of pesticides on environment and people, as well as the effective protection of targeted crops. This should help minimizing the anticipated negative impacts associated with the implementation of the Program activities.

This Action Plan includes:

- 1. Promoting the use of alternative pest management strategies in the project areas;
- 2. Development and promotion of IPM technologies;
- 3. Strengthening of controls during importation of phytosanitary products;
- 4. Capacity building of key actors on the rational use of pesticides:
- 5. Sensitization of farmers on IPM methods and good phytosanitary practices (transport, storage, application and other safety measures);
- 6. Environmental monitoring of the physico-chemical quality of water resources (groundwater and ponds);
- 7. Health monitoring of pesticides users and management of empty containers.

Ongoing monitoring, supervision and annual evaluation will be done.

The Plant Protection Services (PPRSD) of MoFA will be responsible for the internal environmental monitoring of the PMP in the intervention sites of the program through the regional PPRSD divisions; the Environmental Protection Agency (EPA) / CCMC will be responsible for the external environmental monitoring of the PMP in the intervention sites of the program and Health monitoring will be provided by the regional health districts. Their capacities should be reinforced for this purpose. Members of the Steering Committee, the CORAF/WECARD and the World Bank will also be involved in the supervision of the Program activities.

The implementation of the recommended measures will be carried out under the coordination of the WAATP Environmental and Social Specialist (ESS) of the Program with involvement of the Environmental and Social Respondents (RES) or Focal Points in the regions, farmers' organizations and NGOs actively involved in field activities.

The costs of the PMP are estimated at US \$. 507, 000. These costs are spread over the five (5) years of the Program implementation.

The table below outlines the cost composition of the PMP's Action Plan.

N°	Activities	Unit	Quantity	Unit cost (US \$)	Total cost (US \$)
1	Strengthen the institutional framework for pest and pesticide management				125,000
2	Strengthen technical and organizational measures for the management of pests and pesticides				205, 000
3	Capacity building of actors involved in integrated pest management				125,000
4	Provide control, monitoring and evaluation of pest and pesticide management				52,000
	TOTAL (US \$)			507, 000	

1. INTRODUCTION

1.1. Context of Program

The agricultural sector (including crops, livestock and fisheries) is one of the main drivers of Ghana's economy. It is a major contributor to exports, employment, incomes and poverty reduction.

Livestock production (cattle, sheep, goats, chickens and guinea fowl), concentrated in rural savanna areas where 86% of draft animals, 63% of cattle and about 80% of guinea fowl are bred (GSS 2013), is an important alternative livelihood for the small Ghanaian farmer.

However, the finding in recent years shows a loss of competitiveness of agriculture, given the progressive reduction of its contribution to GDP from 42% in 2005 to 22% in 2013 (ESG 2014) and 19.1% in 2016 (ESG 2017).

The gradual decline in agricultural productivity can be attributed to several aggravating factors, including (i) the dominance of the sector by smallholders, women and the elderly who have limited access to financial, technical and managerial services: (i) extension services; (ii) over-dependence on natural rainfall conditions, soil fertility and even planting material; (iii) endemic post-harvest losses, reducing productivity by almost a third (IFAD, 2008) and (iv) limited animal production by challenges related to inferior breeds, diseases, fires, floods, and conflicts with crop producers.

In addition, Ghana's agricultural sector is just coming out of a fight against the Fall Army Worm (FAW). In April 2016, the worm caused devastating consequences on several crops, especially maize and some perennial crops such as cocoa.

Also, despite the Government's efforts to meet the challenge of modernizing agriculture and introducing improved technologies for farmers and other value chain actors for mass adoption, through Development of the Food and Agricultural Sector (FASDEP), the Investment Plan for the Agricultural Sector in the Medium Term (METASIP) and the "One Village One Dam" Policy, food security is still a major challenge at the national level.

In a quest to improve agricultural productivity to satisfy food needs of a growing population, promote sustainable economic growth and reduce rural poverty in the Economic Community of West African States (ECOWAS) sub-region, Ghana benefited from a two-phase 10-year Adoptable Program Lending (APL) funded by the World Bank,with each phase spanning five-year duration (i.e. between 2007 and 2017). The West Africa Agricultural Productivity Program (WAAPP) supported the implementation of CAADP's agricultural research and development (R&D) pillar, as reflected in the national agricultural investment plans and the regional mobilizing program.

In view of the satisfactory results achieved by WAAPP and to further contribute to the structural transformation of Ghana's agriculture for a strong, resilient, inclusive and job-creating growth, especially for young people, the Economic Community of West Africa States (ECOWAS) and the World Bank have (WAATP) reaffirmed their willingness to support Ghana in the formulation of a West Africa Agriculture Transformation Program

Under WAATP-Ghana, it is planned, especially in components 2 and 3, to ensure improvement in agricultural productivity through mass adoption of climate smart technologies (extension), production and certification of improved seeds and planting materials (maize, rice, cassava, yam, sweet potato etc.), promotion of the use of fertilizers, promotion of safe and responsible use of pesticides, provision of modern infrastructure to ensure access to quality pest control products for optimum results, as well as the regulation of veterinary products in the livestock(small ruminant) and poultry sectors.

These activities could directly or indirectly, result in increased use of plant protection products or induce the use of pesticides or other pest control methods (pests, diseases and weeds) by farmers for increased productivity.

However, the intensive application of pesticides (insecticides) could result in the reduction or elimination of bio-control agents or crop aids, thereby promoting the uncontrolled increase in pest populations and the occurrence of secondary pests as well as the development of pesticide resistance in pests. In addition, contamination of soil, surface and groundwater is one of the consequences that could compromise the achievement of program objectives.

There is the need for Integrated Pest Management approaches to be adopted in order to regulate the potential use of these chemicals to address pest problems and crop diseases; thus meeting the requirements of a productive and sustainable agriculture and minimizing the health and environmental risks. This Pest Management Plan (PMP) is developed as a result of the triggering of the World Bank Operational policy OP 4.09 (Pest management).

1.2. Objectives of the PMP

The overall objective of the study is to develop the WAATP-targeted Crop and Livestock Pest Management Plan to prevent or mitigate the negative impacts of pesticide use on the natural and human environment.

The Pest Management Plan (PMP) is designed, on the one hand, to minimize potential negative impacts of pesticides on human and animal health as well as the environment; and on the other hand, to promote the use of integrated pest management methods and approaches under the program.

The PMP also addresses a major objective by assessing and strengthening the capacity of the country's institutional, regulatory and technical framework to promote and support the safe, effective and efficient management of pests and pesticides and their residues and incorporate safeguards proposals into the program.

It is more specifically about:

- identify all the potential risks of plant protection products on natural and human resources, with regard to the interventions envisaged under the program;
- propose an action plan for Integrated Pest Management;
- define the institutional arrangements for implementation and monitoring of the action plan before, during and after the implementation of the Program and the implementation of activities to eliminate or mitigate negative environmental and social impacts.

1.3. Methodology

The methodology adopted for the development of this PMP is based on a participatory approach, involving all stakeholders and partners concerned with WAATP, including those in the regions of Ghana. This participatory approach supported by Government and key stakeholders, allowed the opinions and proposals of the different actors to be integrated into the PMP. To achieve the results of the study, the underlisted strategies were adopted:

- an analysis of program documents (Program Concept Note) for a better understanding of the objectives, components of WAATP and its potential activities; as well as other strategic and planning documents and training tools at the national or local levels;
- a bibliographic review of national laws and regulations on the protection of the environment and natural resources, agriculture (phytosanitary regulations) and environmental and social safeguard policies established by the World Bank;

- meetings and consultations of institutional and socio-professional actors mainly concerned by the WAATP: Ministry of Food and Agriculture (MoFA); Ministry of the Environment, Science, Technology and Innovation (MESTI), NGOs and farmers' organizations;
- site visits (crop field and greenhouse activities) and interviews with beneficiaries and potentially affected persons, officials and resource persons in the various localities concerned (Pokuase, Kpone Katamansu, Abokobi, Appolonia) in the Greater Accra region.

1.4. Structure of the report

The report is structured around the following:

- Introduction;
- Description of the program;
- Political, legal and institutional framework;
- Diagnosis of the current situation of pests and pesticides;
- Analysis of environmental and social risks and impacts, mitigation measures associated with the use of phytosanitary products;
- Action Plan for the Integrated Management of Pests and Pesticides;
- Budget for implementation of the PMP.

2. DESCRIPTION OF THE PROGRAM

2.1. Program Development Objective (PDO)

The Project Development Objective (PDO) of WAATP is to accelerate adoption of improved technologies and youth job creation and strengthen enabling conditions for access to regional markets for the participating countries' priority agricultural commodity areas, and to enable the Governments to respond promptly and effectively to eligible emergencies.

Specifically, the following objectives are pursued: (i) strengthen the new generation model of innovations in West Africa as part of the transformation of Ghana's National Centers of Excellence into Regional Centers of Excellence (RCoE); (ii) increase agricultural productivity through the acceleration of the massive adoption of technologies; (iii) promote technologies and value-enhancing innovations in agri-silvo-pastoral and fisheries value chains that are likely to create jobs, especially for youth and women, and that can improve food security and increase incomes populations supported by the program; (iv) strengthen the institutional framework, policies and markets; and (v) contribute to the management of crisis management.

2.2. Description of Components

The program will be implemented over a five (5) year period and includes the following five (5) components:

• Component 1: Strengthening the new model of Innovation delivery in West Africa

The component aims to strengthen the National Centers of Excellence supported under WAAPP and upgrade them to become ECOWAS Regional Centers of Excellence (RCoE) for research focusing on priority lines of research to be addressed regionally. The RCoE will play a key role on ensuring a solid link with research system, (CGIAR, other advanced research centers, the private sector, etc.) and the networking of national agricultural research and extension systems to deliver in a sustainable manner improved technologies and innovation -which will be screened to ensure that they are climate-smart and gender sensitive for scaling up.

It has two sub-components:

✓ Sub-Component 1.1: Strengthening National Centers of Specialization

This sub-component relates to support for:

- Strengthening the new model of innovation delivery
- Procure items to support WAATP implementation
- Promotion of research uptake
- Priority partnership
- NCoS to RCoEs consolidated

✓ Sub-component 1.2: Strengthening of adaptive research (R&D) Priority Value Chains: 1. Cassava, sweet potato, cocoyam, and yam. 2. Maize, rice, sorghum, pearl millet

This subcomponent includes activities below:

- Develop MOUs with National Partners
- Strengthen staff capacity in seed related training activities
- Adaptive research projects/innovative platforms
- *Production and supply of breeder and foundation seeds*

- Appropriate processing methods for high quality dried tomatoes, pepper, onions and leafy vegetables developed, tested and technology transferred to processors
- Soil studies for optimizing fertilizer use in Ghana's ecological zones
- Participate in CORAF Research and Regional Activities

• Component 2: Accelerating mass adoption of improved technologies and innovations.

The component aims to intensify the adoption of innovations that will accelerate productivity increases, improve climate resilience, reduce post-harvest losses, promote value addition, and accelerate job creation for youth.

The component has the following three subcomponents:

✓ Sub-component 2.1 : Demand driven market based interventions

This subcomponent will support the following activities:

- Reform/ strengthen Agricultural Service Delivery
- Scaling up technology dissemination
- Improving access to extension services

✓ Sub-component 2.2 : Strengthening the seed sector

The activities to be implemented relate to:

- Access of seed value chain actors to finance and markets
- Support to Agricultural stations
- Procurement of certified seed
- Seed production for planting for food and jobs Promote e-Agricultural Services

✓ Sub-component 2.3 : Jobs for the youth

The sub-component aims to increase youth employment by using the regional pool of technologies and best practices in collaboration with the private sector. The sub-component will be developed around the following activities:

- Procurement of materials in support of youth employment:

• Component 3: Policies, markets and institutional strengthening

The objective of the component is to create a favorable policy environment to accelerate the transformation of agriculture, link production to markets and strengthen regional integration institutions. The component will have 3 sub-components.:

✓ Sub-component 3.1: Policy formulation and regulation in favour of markets and institutional strengthening

The component will support the following activities: (i) promote the safe and responsible use of pesticides; (ii) provide infrastructural support to ensure that pest control products are of the quality needed to optimize resources; (iii) strengthen the legal and institutional framework for pesticide management; (iv) support sub-regional efforts for the harmonization of pesticide regulations; (v) monitor interventions on the use and management of pesticides; (vi) certification of planting material / seeds; ; (vii) regulate veterinary products; (viii) implement the ECOWAS Regulations on Seeds and Fertilizers; (ix) establish and implement a sustainable financing mechanism; and (x) update existing strategies and action plans on gender, communication, climate change and nutrition, and improve their implementation. In addition, sub-component 3.1 will also undertake value chain studies on priority products at the national level.

- Policy formulation and regulation in favour of markets and institutional strengthening
- Reporting on project activities

✓ **Sub-component 3.2**: **Regional market development for targeted products**. This sub-component 3.2 will support regional studies on cassava, yams, rice and maize.

✓ Sub-component 3.3: National and regional institutional capacity building.

This sub-component will deploy activities for strengthening national and regional institutional capacities.

To strengthen regional institutional capacity, WAATP will support (i) collaborative work between quarantine units to reduce the incidence of disastrous pests in the respective countries; and (ii) develop demand-driven multi-country research proposal funding from CORAF.

- Regional Institutional Capacity Building
- Recruitment and operational costs

• Component 4 : Contingent emergency response

The objective of this component, known as the Contingent Emergency Response Component (CERC), will be to make available resource to strengthen the response capacity of the Government of Ghana in case of emergency.

The checklist of eligible disaster situation will be the following:

- pest and diseases infestation, such as FAW, locusts, swine fever and bird flu
- severe climate change resulting extreme drought or floods
- severe bush and wild land fires
- protracted community conflicts
- Component 5: Program management, learning, monitoring and evaluation.
 - ✓ Sub-component 5.1: Harmonized Coordination and Management—
 - ✓ Sub-component 5.2: Monitoring and evaluation, Knowledge management Communication

2.3. Program intervention area

The West Africa Agricultural Transformation Program (WAATP) is a national scope program whose activities will be implemented in the different regions of Ghana as shown in the figure below.

All the project implementation sites are strictly for agricultural purposes. There are no protected areas, such as national parks and wildlife reserves, nor are there any forest reserves or other sensitive habitats in the vicinity.

BURKINA FASO Upper ●Bolgatanga East Reg Upper West Region zum Vergleich Salzburg Wa Northern Region Hauptstadt Tamale Regionshauptstadt Staatsgrenze Regionsgrenze CÔTE D'IVOIRE (ELFENBEINKÜSTE) TOGO Bondoukou **Brong-Ahafo Region** BENIN Volta Ashanti Region Kumasi Eastern Region Region Lomé Koforidua • Western Greater Accra Region Region Central Accra Region Sekondi-Takoradi Cape Coast Atlantischer Ozean

Figure 1 : Administrative map of Ghana

Source: www.touringghana, June 2018

2.4. Arrangement for Program implementation

The institutionals arrangements for program implementation are recorded in the following table.

Table 1: Implementing mechanism of the project

Actors	Role		
	Regional level		
Executive Secretariat of the	The ES / WECARD ensures the WAATP Regional Coordination and		
West and Central African	the capacity of the Environmental and Social Focal Points (PFESFP) of		
Council for Research and	the technical institutions involved in the implementation of the		
Development(ES/WECARD)	program are built.		
Progran	1 Implementation phase: National Level		
	The PSC will be responsible for: (i) monitoring and evaluation of progress of key activity implementation as well as the validation and recommemndation of all the activities carried out and the documents		
The Program Steering Committee (PSC)	produced (ii) ensure the integration and budgeting of environmental and social procedures in Annual Work Plans and Budgets (AWPBs);		
	(iii) approve the annual procurement plan; and (iv) review the annual		
	performance report on implementation to be prepared by WAATP's PCU / MoFA and oversee the implementation of the PMP activities.		

Actors	Role
Ministry of Food and Agriculture (MoFA)	MoFA is the lead Institution/ministry to manage and implement the program .It will offer managerial, technical and financial services in strong collaboration with relevant institution and key stakeholder.
Dogwood Coordinating Heit	The PCU will coordinate, monitor and provide technical and fiduciary services in the management of program resources. It falls under the technical supervision of the Ministry of Food and Agriculture (MoFA).
Program Coordinating Unit (PCU) /MoFA	The WAATP Coordinator, in collaboration with the ESS at PCU, will ensure the effective implementation of the PMP's Action Plan and take into account environmental and social aspects and issues in the implementation of the program activities.
Environmental Protection Agency (EPA)/Ministry of Environment, Science, Technology and Innovation (MESTI)	The implementation of the program will involve the delegation of certain activities to the national entities of the environmental protection sector: The EPA will participate in the dissemination of good agrienvironmental practices and the extension of IPM methods. The Agency will participate in the information and dissemination of the PMP. EPA will also monitor the negative environmental impacts of pest and pesticide management under the PMP and offer critical technical advice.
NGOs and civil society	In addition to social mobilization, civil society and NGOs will participate in the citizen engagement and monitoring of the actual implementation and evaluation of the environmental impact of the PMP implementation.
Executing Agency (RCoE/NCoS)	RCoE / NCoS will also be involved in the implementation of the WAATP PMP through the Environmental and Social Focal Point / Research (ESFP / R) which will also ensure the integration of environmental and social aspects into research requests. A Memorandum of Understanding will delegate responsibility for the implementation of the project to the management or partner concerned and specify the implementation modalities.
Appropriate public and private service providers	The private / public service provider will be responsible for carrying out all relevant activities in a given geographical area (technical rehabilitation / construction works, technology extension, preparation of seed certification applications etc.), and submit all documents to the PCU.

Source: Program Concept Note

3. POLICY, LEGAL AND INSTITUTIONAL FRAMEWORK FOR PEST/DISEASE MANAGEMENT

3.1. Policy framework

3.1.1. Environmental policy

Environmental policy in Ghana is based on the achievement of strategic objectives related to the sustainable management of natural resources; promoting the application of science, technology and innovation in all sectors of the economy; the development of research and its application for equitable and balanced spatial and socio-economic development.

3.1.2. Health policy and environmental hygiene

Health policy in Ghana is based on Primary Health Care. In the field of Health and Hygiene, the Ministry places special emphasis on: the elimination of excreta and other wastes including biomedical waste; community awareness of the benefits of environmental health; the extension and application of hygiene rules, even those relating to the use and management of plant protection products, etc.

3.1.3. National plant protection policy

The overall goal of the national plant protection policy is to achieve an efficient system that ensures that crop losses caused by biological, environmental and ecological factors are contained in a sustainable and economical manner. There are thirteen (13) principles underlying the Plant Protection Policy. Three of the underlying principles, namely principle 7 (IPM), 8 (Coordination of IPM Activities) and 9 (Contribute to IPM research) provide for integrated pest management (IPM) issues. Principle 7 on IPM specifically fix promoting Integrated Pest Management (IPM) as the standard plant protection strategy for all crops to effectively reduce crop losses with minimum pesticide use.

3.2. Legislative and regulatory framework

The legal framework that has a direct and / or indirect relationship to the management of pests and pesticides, involves several laws and regulations at the national level, guidelines, import and export procedures, codes of conduct or practice as well as international agreements, treaties and conventions ratified by the countries.

3.2.1. National legal instruments relevant to pest management

Ghana has relatively large legislation in the area of chemicals management, particularly in pesticide management. These include, among others:

- *The 1992 Constitution of Ghana* provides the broad policy basis for the protection of the environment. The relevant sections are as follows:

Economic Development - Article 36 (9): The State shall take appropriate measures needed to protect and safeguard the national environment for posterity; and shall seek co-operation with other states and bodies for the purposes of protecting the wider international environment for mankind.

Economic Development - Article 36 (10): The State shall safeguard the health, safety and welfare of all persons in employment, and shall establish the basis for the full deployment of the creative potential of all Ghanaians.

Duties of a Citizen - Article 41 (k): The exercise and enjoyment of rights and freedoms is inseparable from the performance of duties and obligations, and accordingly, it shall be the duty of every citizen to protect and safeguard the environment Article 268 of the 1992 Constitution states that "Any transaction, contract or undertaking involving the grant of a right or concession by or on behalf of any person including the Government of Ghana, to any other person or body of persons howsoever described, for the exploitation of any mineral, water or other natural resource of Ghana made or entered into after the coming into force of this Constitution shall be subject to ratification by Parliament.

- The Environmental Protection Agency Act, (Act 490) of 1994, an act to amend and consolidate the law relating to environmental protection, pesticides control and regulation and for related purposes. The Act provides rules for registration, manufacturing, use, disposal and non-disclosure of information, classification, licensing, reporting, labelling and inspections of pesticides.

This law addresses the registration of all pesticides prior to their use in Ghana. It recognizes the need for the safe handling and use of pesticides and as such as provisions for licensing of persons or entities engaged in all pesticide use activity such as retailing, commercial pest control, importation, manufacture, formulation, distribution, use and transportation of pesticides in Ghana. Issues regarding safeguards to pesticide use such as the use of personal protective equipment have been provided in the law with stated penalties for non-compliance. In addition, the law also has provisions for the listing or registration of pesticides as banned pesticides. A gazette register is produced yearly which provides details of all registered and banned pesticides in Ghana.

There are other related regulatory frameworks whose implementation seeks to augment the overall objectives of pesticides management in general. These include but not limited to the following:

- Plants and Fertilizer Act, 2010 (Act 803): The Plant and Fertilizer Act of 2010 combines the Seed Inspection and Certification Order, NRCD 100 of 1972, and the Pest and Plant Disease Prevention and Control Act 307 of 1965. The law provides for effective plant protection to prevent the introduction and spread of pests and diseases to regulate the import and export of plants and planting material; the regulation and control of exports, imports and commercial transactions in the seed sector and related matters; and the control and regulation of the fertilizer trade
- Local Governance Act, 2016 (Act 936);
- Labour Act, 2003 (Act 651);
- Factories, Offices and Shops Act, 1970 (Act 328);
- Public Health Act, 2012 (Act 851);
- Hazardous and Electronic Waste Control and Management Act, 2016 (Act 917);
- Environmental Assessment Regulations 1999 (LI 1652);
- Pesticides Use and Policies in Ghana. 2001;
- The Prevention & Control of Pests and Diseases of Plants Act, 1965 (Act 307);
- Ghana Revenue Authority Act, 2009 (Act 791).

These legislative documents are poorly known by the public, because of the lack of a powerful system and the lack of dissemination. This fact reflects the free circulation of certain products containing the incriminated active ingredients. Few actions are taken to control the import and use of pesticides.

These laws and implementing decrees serve as a reference base in phytosanitary legislation and pest management in Ghana.

It should be noted that a draft Regulation on the storage and use conditions of approved plant protection products is being processed (EPA).

The adoption and application of this law should systematically contribute to the dissemination of good phytosanitary practices in the basic production communities, relating to the storage and handling of products as well as a consequent reduction of the resulting risks.

3.2.2. International legal instruments

Ghana has signed and / or ratified several international conventions related to chemicals. These conventions are:

- Convention concerning protection against the risks of poisoning due to benzene, adopted in Geneva in 1971;
- Bamako Convention on the Prohibition of the Import into Africa of Hazardous Wastes and on the Control of Transboundary Movements and the Management of Hazardous Wastes Produced in Africa, adopted in Bamako on 31 January 1991;
- Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal, adopted on 22 March 1989;
- Convention on Persistent Organic Pollutants (POPs), adopted in Stockholm 22 May 2001;
- Vienna Convention for the Protection of the Ozone Layer, adopted on 22 March 1985;
- Montreal Protocol on Substances that Deplete the Ozone Layer, adopted on 16 September 1987;
- Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade, adopted on 10 September 1998;

Convention on Chemical Weapons adopted on 13 January 1993 and put into effect in April 1997;

- International Plant Protection Convention adopted on 6 December 1951 and entered into force on 4 April 1991.
- Ramsar Convention on Wetlands for Wetlands of International Importance, adopted on 02 February 1971 and entered into force 197;

By the act of ratification, Ghana agreed to be bound by the obligations imposed on Parties by the Convention. The obligations arising from the ratification of the Convention are a commitment to comply with and implement its provisions and the enactment of a national law to give effect to our obligations under the Convention.

Among the conventions mentioned above, a certain number are of direct importance with pesticides and the fight against pollution (see table 2) notably the Stockholm Convention on Persistent Organic Pollutants. This Convention aims, in accordance with Principle 15 of the Rio Declaration on Environment and Development, to protect human health and the environment from persistent organic pollutants such as aldrin, dieldrin, chlordane, endrin, heptachlor, hexachlorobenzene, mirex, toxaphene, DDT and PCBs.

The Rotterdam Convention also plays a key role in the management of pesticides as it is a measure of protection for the country in that it has a number of measures that limit the import of pesticides that are recognized as hazardous and exclusion by the international community.

The Ramsar Convention (the Convention on Wetlands) provides a framework for national action and international cooperation on the conservation and wise use of wetlands and their resources. Water pollution resulting from the misuse of pesticides could seriously hinder the functioning of wetland ecological processes.

The table below shows the conventions ratified and or signed by Ghana, in connection with the WAATP.

Table 2: International conventions ratified by Ghana, in connection with WAATP

	Table 2. International conventions rather by Ghana, in Connection with WAATI					
N°	Convention signed / ratified	Date and place of adoption of the agreement	Date of accession of Ghana	Link with WAATP		
1	Convention on Persistent Organic Pollutants (POPs)	Stockholm, May 22, 2001	23/05/2001(Signed) 30/05/2003 (Ratification/ Approval) 17/05/2004 (Entry into force)	Pesticides affected by persistent organic pollutants are banned from use in Ghana. WAATP will need to ensure that pesticides used in IPM are registered.		
2	Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade.	Rotterdam, September 10, 1998	11/09/1998 (Signed) 30/05/2003 (Ratification/ Approval) 24/02/2004 (Entry into force)	The WAATP through support to the improvement of crop productivity (tubers, cereals, small ruminants and poultry) is addressed by this convention. WAATP will have to ensure (i) that pesticides that will be used in the context of integrated pest management are registered, (ii) ensure that users are aware of the hazards and risks associated with the use of pesticides and (ii) ensure the development of user capacity for the responsible management of pests and pesticides.		
3	Ramsar Convention on Wetlands on Wetlands of International Importance	Ramsar, February 02, 1971	The convention entered into force in Ghana on 22 June 1988.	WAATP's support for the production of irrigated seeds and planting materials raises fears of systematic use of pesticides by beneficiaries for crop protection. The WAATP is therefore challenged by this convention and will have to ensure the rational use of wetlands (maintenance of their ecological characteristics).		

3.2.3. Common Regulatory at ECOWAS level

In 2005, the ECOWAS countries joined the process of harmonization of the rules defining the accreditation of pesticides in the ECOWAS region. In 2008, a regulatory was issued after several regional validation workshops. The purpose of this Common Regulatory C / REG.3 / 05/2008 harmonizing the rules governing the registration of pesticides in the ECOWAS region is, in particular, to:

- protect the people and the West African environment against the potential dangers of pesticide use;
- facilitate intra and inter-State trade in pesticides, through the establishment of mutually agreed rules and principles at the regional level to dismantle trade barriers;
- facilitate convenient and timely access to quality pesticides for farmers. This regulation applies to all activities involving experimentation, as well as authorization, trade, use and control of pesticides and bio-pesticides in the Member States.

Ghana, although a stakeholder in the consultations on the harmonization process, the country is yet to implement this common regulatory on pesticides registration.

3.2.4. International Code of Conduct on Pesticide Management (Rome 2014)

This Code establishes voluntary rules of conduct for all public and private bodies responsible for or associated with the management of pesticides, particularly where national legislation regulating pesticides is non-existent or insufficient.

This Code has Article 1.7.3, which promotes practices that reduce risks throughout the life cycle of pesticides, with a view to minimizing their adverse effects on humans, animals and the environment, and preventing accidental poisoning due to handling, storage, transportation, use or disposal, and the presence of pesticide residues in food and feed.

3.2.5. FAO guidelines for locust control

FAO has given high priority to EMPRES (System for Prevention and Rapid Response to Transboundary Animal and Plant Pests and Diseases) to build national capacity. To this end, it has prepared a set of six guidelines for national and international organizations and institutions engaged in locust survey and control, which deal with Desert Locust biology and behavior, information and forecasts, the organization and execution of a campaign and the precautions of use of pesticides on human health and the environment.

3.2.6. Operational Policy 4.09 on Pest Management

Pest management is based on the World Bank OP 4.09 Operational Policy. The objective of this policy, integrated into the activities of the institutions, is to: (i) promote the use of biological or environmental control and reduce the dependence on synthetic chemical pesticides; (ii) strengthen regulatory and institutional capacity to promote and support safe, effective and environmentally sustainable pest management.

The policy is triggered if: (i) the acquisition of pesticides or pesticide application equipment is considered (either directly through the project, or indirectly through the allocation of loans, co-financing, or financing of government counterpart); (ii) the project may affect pest control in a way that the harm could be done, even if the project is not contemplated to obtain pesticides.

In Ghana, the national plant protection policy is based on integrated pest management by principle.

The German Development Cooperation (GTZ) has supported the PPRSD of MOFA to develop separate booklets to serve as extension guides on integrated pest management practices for the production of (i) vegetables; (ii) cereals/pulses; (iii) roots and tubers, and plantains.

National IPM approaches have been developed for cereals, root and tubers and vegetables largely based upon 16 principles and practices on the cropping calendar of the crops in each case.

MoFA in collaboration with the EPA develops IPM capacity building for key actors (extension services, agricultural organizations). These extension guides include: Principles of Integrated Pest Management Healthy Crops; Integrated Pest Management Practices for the Production of Cereals and Pulses, etc.

However, extension IPM approaches among farmers, remains a challenge. In addition, Universities and Research Centers are developing research activities based essentially on knowledge of the biology and ecology of crop pests.

In Operational Policy OP 4.09 on pest management, the World Bank establishes criteria for the selection and use of pesticides in the projects and programs it finances. These last are:

- (a) the products selected must have negligible effects on human health;
- (b) their effectiveness against the target species must be established;
- (c) they must have very limited effects on non-target species and the environment;

(d) their use must take into account the need to prevent the emergence of resistant species. The methods, the timing of the intervention and the frequency of the applications must make it possible to protect as much as possible the natural selection and the biological control vectors. It must be demonstrated that the pesticides used are harmless to the inhabitants and domestic animals in the treated areas, as well as to the personnel who apply them.

The World Bank does not fund the procurement of World Health Organization (WHO) Class IA and IB products or Class II formulations if: (i) the country has no restrictions on their distribution and use, or (ii) if non-specialists, farmers or other persons are likely to use them or have ready access without the necessary training, materials and infrastructure to handle, store and apply them properly. For the classification of pesticides or formulas specific to each of the products under consideration, the

World Bank refers to the classification recommended by WHO. The classification of pesticides by risk or hazard is based on their acute toxicity expressed as the LD50 oral and intradermal LD50 values (see Table 3).

Table 3: WHO Recommended Classification of Pesticides for Hazards

Class		LD50 for a rat (mg / kg body weight)					
		Oral way		Dermal			
		Solid	Liquid	Solid	Liquid		
Ia	Extremely dangerous	<5	<20	<10	<40		
Ib	Very dangerous	5-50	20-200	10-100	40-400		
II	Moderately dangerous	50 - 500	200 - 2000	100 - 1000	$400 - 4\ 000$		
III	Slightly dangerous	>500	>2000	>1000	>4000		
U	Safe in case of use	>2000	>3000	-	-		
	Normal						

Source: Copplestone J.L (1988). The development of the WHO recommended Classification of

Pesticides by Hazard

3.3. Institutional Framework

An institutional framework exists for multi-sectoral collaboration in the control and management of pest and pesticides in the country, with Environmental Protection Agency (EPA) as the coordinating center. All of these stakeholders are presented below.

3.3.1. Ministry of Environment, Science, Technology and Innovation (MESTI)

MESTI's mission is to design, develop and coordinate the implementation of the Government's policy in the areas of environmental protection, the rational management of natural resources and the improvement of the environment quality of life.

MESTI has adopted a number of policy objectives from the Ghana Shared Growth Development Agenda (GSGDA II) including the following:

- 1. Strengthen institutional and regulatory frameworks for sustainable natural resource management;
- 2. Promote the application of Science, Technology and Innovation in all sectors of the economy;
- 3. Strengthen the institutional framework to promote the development of research and its application;
- 4. Strengthen policy formulation, development planning, and M&E processes for equitable and balanced spatial and socio- economic development

MESTI has under his tutelage the Environmental Protection Agency (EPA).

3.3.1.1 Environmental Protection Agency (EPA)

The environmental protection agency is the leading public body responsible for protecting and improving the environment in Ghana. The Agency was formally established on 30th December, 1994 by Act 490 and given the responsibility of regulating the environment and ensuring the implementation of Government policies on the environment; and having regulatory and enforcement powers.

One of the EPA 's core function to regulate the import, export, manufacture, distribution, sale and use of pesticides. These functions are carried out through the Chemical Control and Management Center (CCMC).

With regard to its attributions, EPA is deployed in all regions of the country with 10 Regional Offices and 216 district offices.

3.3.2. *Ministry of Food and Agriculture (MoFA)*

The Ministry of Food and Agriculture (MOFA) is the lead agency responsible for the agricultural sector within the context of a coordinated Government Programme. To carry out its function, plans and programmes are coordinated through policy and strategy frameworks.

3.3.2.1 Plant Protection and Regulatory Services Directorate (PPRSD)

The PPRSD was established in 1965 by an Act of Parliament: Prevention and Control of Pests and Diseases of Plants Act, 307 now replaced by "Plants and Fertilizer Act, 2010 (Act 803). The PPRSD is the National Institution with the mandate and capacity to organize, regulate, implement and coordinate the plant protection services (including pests management and pesticide use) needed for the country in support of sustainable growth and development of Agriculture.

The PPRSD has its headquarters in Pokuase near Accra and there are also regional officers in all the 10 regions of the country. It also represented at the main entry and exit points throughout the country. It is not directly represented at the district level however it collaborates with the district MoFA offices to carry out its functions at that level in support of sustainable growth and development of Agriculture.

The PPRSD is divided into four (4) main Divisions and these include:

- Crop Pests & Disease Management Division
- Pesticide and Fertilizer Regulatory Division
- Ghana Seed Inspection Division
- Plant Quarantine Division.

Table 4: Role and Mandate of the PPRSD Divisions

Division	Role and mandate
Crop Pests & Disease	• Develops Good Agricultural Practices (GAPs), guidelines for
Management Division	Integrated Pest Management (IPM) of food crops
	• provides information on pests and disease situation
	• carries out training in GAPs and provides comprehensive
	diagnostic and identification services of plant pests and diseases for
	stakeholders, monitors the pest situation in the country,
	• ensures effective control of plant pests, manages calamity pest
	outbreaks (e.g. armyworms, grasshoppers etc), and carries out
	classical bio-control measures (mass rearing and release of bio-
	agents), and
	• serves as secretariat for National Fruit Fly Management
	Committee and National IPM programme.

Pesticide and Fertilizer Regulatory Division	 Supervises and trains Regulatory Inspectors, publishes information materials, registers and trains pesticides and fertilizer dealers and applicators, keeps records as well as statistics of pesticides and fertilizers and manages pesticide and fertilizer stocks in the country. Supervises bio-efficacy trials carried out by research. 		
Ghana Seed Inspection	• responsible for seed certification		
Division (GSID)	Seed growers:		
Division (GSID)			
	Registration of Seed Growers		
	• Monitoring of seed and planting material production of crop species		
	Certification of Foundation and Certified Seeds and also Primary		
	and Secondary planting materials.		
	• Training of major stakeholders (Seed Inspectors, Registered Seed Growers, Seed Dealers, Extension Staff of MOFA and NGO's etc)		
	• Facilitation of promotional activities in the seed industry.		
	Seed dealers:		
	• Registration of Seed Dealers		
	Monitoring of Seed Dealers' outlets		
	Seed importers and exporters:		
	Registration of importers		
	Monitoring of importers' outlets		
	• Registration of exporters		
	Monitoring of exporters' outlets		
	<u>Farmers:</u>		
	• Education and awareness creation on the benefits of utilization of		
	certified seed/planting materials		
Plant Quarantine Division	• Works closely with the customs authorities (CEPS) at all the official entry points.		
	Supervises and trains Phytosanitary Inspectors, develops and		
	publishes information material, keeps records of plant imports and		
	exports, the importers and exporters, as well as the pests and		
	diseases of quarantine importance.		
	• Issues phytosanitary certificates and import permits according to the IPPC format.		
	• Inspects plant materials and makes sure they are free from pests.		
	Operates the National SPS Enquiry Point.		
	• Carries out inspection on marketing quality standards on fresh		
	fruits and vegetables for export.		
	• Implements relevant International Standards for Phytosanitary Measures (ISPMs).		

Source: MoFA, 2018

3.3.2.2 Directorate of Crop Services (DCS)

The Directorate is responsible for the following among other things:

- Ensuring that there are planting materials (seeds) in adequate quantities at affordable prices at appropriate times and places;
- Recommending issuance of permits and waivers for the importation of agricultural materials for the crops sub-sector/industry.
- Sourcing, soliciting, and analyzing information for the crop sub sector development-Provision of information to development partners on suitable areas for intervention.

The Directorate has five Units including the Environment, Land and Water Management Unit.

The Unit is responsible for promoting sustainable use of natural resources for agricultural production. It is also to ensure that environmental sustainability is mainstreamed into sectoral policies, plans and programmes. This Unit undertakes programmes and activities with regard to agroforestry. The Unit hosts the climate change desk of the Ministry of Food and Agriculture and facilitates the mainstreaming of Climate Smart Agricultural (CSA) principles and practices in agricultural sector activities.

The Unit has the oversight responsibility of implementing the National Climate Smart Agriculture and Food Security Action Plan.

3.3.2.3 Veterinary Services Directorate

The vision of the Veterinary Services Directorate is to create an animal health system which provides quality animal health services to enhance livestock production and productivity.

Its Mission is to ensure a stable animal health situation through the provision of quality animal health care services by both public and private sector veterinary practitioners to enhance livestock, poultry and companion animals' production and productivity.

To accomplish its mission the Veterinary Services Directorate pursues the following objectives:

- Provide animal health services for the national livestock in order to further the expansion of the livestock and poultry industries in the country.
- Protect public health by controlling animal diseases communicable to human beings.
- Alleviate suffering among animals.
- Protect the health and safety of pet and zoological animals.

The directorate has 10 regional offices and field technicians in all the 216 districts. This notwithstanding the directorate still faces many logistical and human capacity challenges in its operations. For instance, with the expected number of 429 veterinarians countrywide, only 50 (11.65%) are post currently. Again, there are challenges with inadequate quarantine facilities and veterinary laboratories (one laboratory out of 13 is equipped and functioning properly). The situation affects the quality of service delivery to farmers as well as cross-border quarantine activities.

Under WAATP, the Veterinary Services would be called upon to play 3 specific roles:

- Improve quarantine stations to facilitate animals mouvements
- Investigate to control small ruminants
- Increase the production of vaccine to sustainable control of Newcastel disease in poultry

3.3.2.4 Directorate of Agricultural Extension Services

The Directorate of Agricultural Extension Services (DAES) is responsible for the overseeing of agricultural technology diffusion through the management of an extension delivery service in the country.

It mission is to work with the regional and district Departments of Agriculture and other stakeholders to ensure that extension services are carried out in an effective and efficient way towards the social and economic development of Ghana.

DAES is tasked to perform the following functions:

- Extension Policy formulation and Planning.
- Review various extension approaches, framework document on RELCs, FBOs and private service providers in extension to improve on extension service delivery.

- Facilitate human resource development at all levels in extension delivery.
- Coordinate Extension activities.
- Collaborate with a range of organisations/ agencies including NGOs, private service providers and public organisations in providing extension service.
- Disseminate information on appropriate approaches to all extension service providers.
- Coordinate the establishment of community field demonstrations on released technologies responding to beneficiary needs.
- Develop efficient extension methodologies including Farmers Field Schools, Study tours for field officers and farmers, and Field Days.
- Promote released technologies through various information systems and communications media to improve awareness of technologies.

3.3.3. Ministry of Health (MoH)

3.3.3.1 Ghana Health Services

The Ghana Health Service (GHS) is a Public Service body established under Act 525 of 1996 as required by the 1992 constitution. It is an autonomous Executive Agency responsible for implementation of national policies under the control of the Minister for Health through its governing Council - the Ghana Health Service Council.

Mandate

To provide and prudently manage comprehensive and accessible health service with special emphasis on primary health care at regional, district and sub-district levels in accordance with approved national policies.

• Functions

For the purposes of achieving its objectives, the Ghana Health Service will perform the following functions amongst others:

- Provide comprehensive health services at all levels directly and by contracting out to other agencies. As part of this function, the GHS will:
- Develop appropriate strategies and set technical guidelines to achieve national policy goals/objectives
- Undertake management and administration of the overall health resources within the service
- Promote healthy mode of living and good health habits by people
- Establish effective mechanism for disease surveillance, prevention and control Perform any other functions relevant to the promotion, protection and restoration of health.

3.3.3.2 Food and Drugs Authority

It is the National Regulatory Authority mandated by the public Health Act, 2012 (Act 851) to regulate food, drugs, food supplements, herbal and homeopathic medicines, veterinary medicines, cosmetics, medical devices, household chemical substances, tobacco and tobacco products.

The FDA is an Agency under the Ministry of Health which aims to provide and enforce standards for the sale of food, herbal medicinal products, cosmetics, drugs, medical devices and household chemical substances. Its function consists of:

- a) Ensure adequate and effective standards for food, drugs, cosmetics, household chemicals and medical devices;
- b) Monitor through the District Assemblies and any other agency of State compliance with the provisions of Part 6,7 and 8 of the Public Health Act,2012 (ACT 851);

- c) Advise the Minister on measures for the protection of the health of consumers;
- d) Advise the Minister on the preparation of effective Regulations for the implementation of Part 6,7 and 8 of the Public Health Act, 2012 (ACT 851).

3.3.4. Ministry of Finance (MoF)

3.3.4.1 Ghana Revenue Authority- Customs Division

The Customs Division is responsible for collection of Import Duty, Import VAT, Export Duty, Petroleum Tax, Import Excise and other taxes.

The Customs Division also ensure the protection of revenue by preventing smuggling. As a frontline institution at the country's borders, Customs Division also plays a key role in surmounting external aggression and maintains the territorial integrity of Ghana. Customs Division is part of the country's security network.

The important role of customs officials in the success of any enforcement efforts has been recognized through several years of collaboration with the EPA in the implementation of chemical regulations. Under Act 490 section 61, the Customs Division serves on the Pesticides Technical Committee

3.3.5. Pesticides Technical Committee

The Pesticide Technical Committee (PTC) is a committee of the EPA Board. It is the organ of approval of pesticides. The Committee consisting of 13 members drawn from relevant institutions with expertise in pesticide management. The institution includes:

- The Chemistry Department of the National Nuclear Research Institute of the Ghana Atomic Energy Commission,
- Cocoa Services Division of the Ghana Cocoa Board:
- Plant Protection and Regulatory Services of the Ministry of Food and Agriculture;
- Veterinary Services Department of the Ministry of Food and Agriculture;
- Ministry of Health;
- Ghana Standards Authority;
- Ghana Revenue Authority/Customs Division;
- Association of Ghana Industries:
- Ghana National Association of Farmers and Fishermen:
- Ministry responsible Lands and Forestry:
- Ministry of Environment Science Technology and Innovation;
- The Environnemental Protection Agency.

3.3.6. Research institutes

Research Institutions in Ghana and the Universities have also successfully conducted projects IPM strategies on pests in several commodities (maize, cowpea, mangoes, lemon, rice, cucumber, cotton etc.). In addition, development of alternative management systems for use in communities practicing urban related agriculture, IPM Kit development, demonstration and transfer of technology in IPM have been carried severally. Nevertheless, full adoption has not been very widespread despite the efforts undertaken. The use of pesticides is increasing in spite of the high cost of the products relative to the financial capacity of majority of farmers.

• Council for Scientific and Industrial Research

The Council for Scientific and Industrial Research (CSIR) is the foremost national science and technology institution in Ghana. It is mandated to carry out scientific and technological research for national development. The Council was established in its present form by NLC Decree 293 of 10th

October 1968 and re-established by CSIR Act 521 of 26th November 1996. The Council, however, traces its ancestry to the erstwhile National Research Council (NRC), which was established by the Research Act 21 of Au-gust, 1958, a little over a year after independence, to organize and co-ordinate scientific research in Ghana and provides the necessary platform for Ghana's accelerated development.

The CSIR is mandated to pursue, among others, the implementation of government policies on scientific research and development, coordinate R&D activities in the CSIR and other S&T institutions nationwide and assist the government in the formulation of S&T policies for national development. The CSIR is further required to commercialize appropriate technologies, in partnership with the private sector and other stakeholders, and encourage in the national interest, scientific and industrial research of importance for the development of agriculture, health, medicine, environment, technology and other service sectors of the economy.

Some CSIR's Institutes directly linked to pesticide use and management in the agricultural sector include but not limited to the CSIR-Crops Research Institute (CRI), CSIR-Savannah Agricultural Research Institute (SARI) and the CSIR-Animal Research Institute, CSIR-Plant Genetic Resource Research Institute (PGRRI) etc.

3.3.7. Specialized laboratories

These are the National Seed Testing Laboratory (NSTL); the Central Veterinary Laboratory and the regional veterinary laboratories and the Poison Control Center.

• National Seed Testing Laboratory (NSTL)

The National Seed Testing Laboratory (NSTL) located at Pokuase near Accra carries out seed sampling and laboratory seed quality tests such as moisture, purity, germination and health before seeds are certified for distribution and marketing. The National Seed Testing Laboratory is a member of the International Seed Testing Association (ISTA) and now awaits accreditation.

• Central Veterinary Laboratory

The most important role of the veterinary diagnostic laboratories is the provision of diagnostic services as well as technical support for animal health extension staff and the livestock and poultry farmers. These include the following:

Differential diagnosis, samples collection and submission to world reference laboratories.

- Serological surveillance and testing.
- Training in disease recognition and confirmation.
- Training in sample collection, processing and submission.
- Training of laboratory Technicians.
- Vaccine production:I-2 Newcastle disease vaccine for rural poultry; Anthrax spore vaccine;
 Blackleg vaccine.

Sheep & Goat Investigation Farm is located at Techiman in Brong Ahafo Region. The main activity is monitoring dynamics of endoparasite in the transitional ecosystem.

Research- problem solving research: Currently the laboratory in collaboration with the Animal Research Institute is developing a vaccine to protect sheep and goats against heart-water, a disease which causes high mortality amongst sheep and goats. Preliminary results are positive and very encouraging.

• Poison Control Center

The need for a poison centre in Ghana has been well demonstrated over the years as evidenced by the occurrence of a variety of cases of poisoning. Important causes are accidental poisoning from mishandling of pesticides among children from kerosene and pesticide' ingestion due to unsafe storage methods in the home, use of herbal potions of unknown composition, overdoses of certain pharmaceuticals for illegal abortion, and accidental food poisonings. Bites from venomous animals particularly snakes are also common. Though preparations toward the establishment of a poison control centre started in mid 1999, it was not until early 2002 that the operations of a modest information centre commenced. Major roles the centre are currently performing include providing: an information service for health professionals on management advice in cases of poisoning; training for primary health personnel in the management of common poisonings; training for agricultural personnel in prevention and first aid management of pesticide poisoning; public awareness education and information programmes for prevention of poisoning. Key challenges include inadequate particularly among health professionals, inadequate number of staff coupled with appropriate training for staff of the centre, dedicated phone lines, literature and timely acquisition of toxicological databases, poor networking with the regions and the absence of clinical and laboratory toxicology services dedicated to managing poisonings. There is however the need for multi-sectoral involvement to establishment of model centres countrywide conditions. to suit local (http://mofa.gov.gh/site/?page_id=74)

Currently, Ghana has a one Poison Control Centre located at Ridge Hospital in Accra. However, the centre has only one well qualified staff. Furthermore, there is the need to establish a well-equipped laboratory and provide other logistical support such as computers and modern equipment to enhance their operations.

These laboratories operate according to different methodologies, in the search for residues, pests / disease and analysis of pesticides, at different levels of use, in water, soil and planting material / seed and animals

3.3.8. Phytosanitary products manufacturing companies

Phytosanitary products marketed in Ghana are either imported or formulated or packaged by approved companies as Distributors in Accra and other cities in the country (Bayer Cropscience SA, Winca-Sunshine Agrochemicals, Calli Ghana, Louis Dreyfus Ghana Limited, etc.).

3.3.9. Agricultural Professional Organizations and Civil Society

These organizations are groups of cooperative farmers or NGOs for the direct acquisition of pesticides from importers or distributors.

• Ghana National Association of Famers and Fishermen (GNAFF)

The Ghana National Association of farmers and Fishermen is the umbrella organization for rural agricultural producers. It is made up of commodity groups (crops, livestock and fisheries. GNAFF was established in 1992 and has over 1,000 employees. Its mission is to: (i) facilitate procurement of agricultural inputs (fertilizers, pesticides) and also marketing of members produce, (ii) organize training programmes and commodity group visits for group for exposure among others.

• Ecological Restorations

Ecological Restorations (ER) carries out advocacy, raises awareness and builds capacity on environmental issues including the sound management of chemicals including pesticides.

These organizations collaborate as part of their activities with a number of stakeholders presented below.

3.3.10. Professionals in the Phytosanitary Sector

There are three (3) main professional pesticide associations in Ghana: CropLife-Ghana, Ghana Agri Input Dealers Association (GAIDA) and Pesticides Importers Association.

Crop Life -Ghana is the association of agrochemical importers and distributors in Ghana. The association is affiliated with Crop Life Africa Middle East (CLAME). It is currently made up of 16 major agrochemical companies in Ghana and counting. Crop Life Ghana controls about 90 % of the fertilizer market as well as about 75 % of the pesticide market in Ghana.

It is committed to sustainable agriculture through innovative research and technology in the areas of crop protection, non-agricultural pest control, seeds, and plant biotechnology.

The key activities of Crop life Ghana: (i) promoting responsible uses (RU) & effective handling of CPPs through effective stewardship programs; (ii) organizing training programs for both members and stakeholders in the industry; (iii) supporting the regulatory agencies in the formulation of policies on pesticide usage, regulation and inspection.

Ghana Agri Input Dealers Association (GAIDA) and Pesticides Importers Association (PIA) are a national body of agricultural input dealers in Ghana. Its mission is to provide services and training for Agri-Input Dealers in Ghana for the Development of competitive agri-input market.

CropLife-Ghana, Ghana Agri Input Dealers Association (GAIDA) and Pesticide Importers Association are trade union chambers that aim to implement the FAO Code of Conduct.

In the context of Ghanaian law, they constitute effective professional groups with administrative and political authorities. CropLife-Ghana, GAIDA and PIA are considered by the Public Administration as the privileged interlocutors in the phytosanitary profession.

3.3.11. Distributors and Carriers

Carriers are involved in the distribution of pesticides in Ghana. Generally, these particular actors are found in the sector because of the financial benefits they can draw without being professionals in the sector of phytosanitary products.

3.3.12. Resellers or Distributors

This group is the intermediary between the manufacturing companies and the users who are farmers, a very important link in the sector because of their role in the transport of phytosanitary products, even in villages and camps.

3.3.13. Pesticide Users

It is the farmers who will benefit from the training actions of the national initiatives set up by the State of Côte d'Ivoire. These farmers are mainly men, but also women and young people, most of whom are out of school. Users of pesticides include approved applicators who are part of the chain of professionals in the phytosanitary sector.

3.3.14. Agricultural Extension Dissemination

Technology dissemination at the district level is undertaken by trained Agricultural Extension Agents (AEAs) of MoFA at the district level. However, there are challenges with inadequate number of

extension agents resulting in high extension-farmers ratio of 1:2,192 (DAES, 2017). The inadequate number was also confirmed during a field visit to Appolonia Operational area in the Kpone Katamansu District in the Greater Accra region.

There are also private initiatives and Non-Governmental Organisations (NGOs) involved in agricultural advisory services and support to farmers under the private sector. Key among them include, the CARE International, Agricultural Development and Value Chain Enhancement Program (ADVANCE), International Fertilizer Development Center (IFDC) and Alliance for Green Revolution in Africa (AGRA). Most of these private sectors entities engage in the distribution of fertilizers and pesticides to farmers to enhance crop yields.

3.4. Regulatory and Institutional Gap Analysis

3.4.1. <u>Legislative and regulatory Gap</u>

Ghana's effort towards the sound management of pesticides has been enhanced greatly by the enactment and implementation of the EPA Act 1994, Act 490. Consequently, the EPA has established a pesticide management scheme, which involves the management of pesticides from cradle to grave. Despite these efforts, there are still some challenges in the effective implementation of the law. This is due to the absence of a full complement of relevant regulations to give effect to some of the provisions of the law. There is therefore is need to address the gap in the legal framework and other legislative inadequacies by reviewing and enacting the relevant regulations to enhance compliance.

3.4.2. Institutional Capacity Gaps

The gaps identified are in terms of human and institutional capacity. All the institutions involved with pesticides regulation or management do have experts with the necessary qualifications. These experts are however not adequate compared to the enormity of the task. As a result, there is heavy work pressure. The remuneration and motivation in most state institutions are so low that, experts in the relevant fields are often enticed by foreign and private organisations to leave the government sector. The lack of personnel is exacerbated by the absence of other resources like logistics and funds to carry out post registration and licensing monitoring activities on pesticides. For instance, the EPA is in the process of establishing a pesticide quality control laboratory. The laboratory requires equipment and accreditation to be fully operational. The EPA has the limitations of both the financial and human resources to handle the demands of the laboratory in effect, the EPA and all the identified institutions be it in research, regulation, awareness or others would require financial support and institutional capacity to be effective in dealing with pesticides.

As part of the extension capacity of IPM approaches and methods, there are also several gaps.

Access of farmers to extension services is deplorable in Ghana. One extension officer, who is hardly resourced with the necessary transportation logistics and equipment, is responsible for over 2,200 farmers. It is therefore to Work towards achieving the UN-recommended ratio of one extension officer to 500 farmers and to ensure adequate equipment of extension agents of technologies and good practices of integrated pest management.

Government has however, taken bold steps to improve extension services by procuring 3,000motorbikes, 216 pick-up vehicles and recruit at least 2,500 extensionists enhance visibility.

4. DIAGNOSIS OF THE CURRENT SITUATION OF PEST AND PESTICIDES MANAGEMENT IN GHANA

4.1. Agricultural background

4.1.1. <u>Major insect pests and diseases of root & tuber- Cassava, yam and sweet potato</u>

The main target crop pests and diseases commonly encountered by MoFA services in the program area are given in the table below.

Table 5:Major insect pests and diseases of Cassava (Manihot esculenta) Crantz

Major Insect pests and	and diseases of Cassava (Manihot escu Damage	Illustration	
Diseases			
Variegated grasshopper, Zonocerus variegatus	Adults and nymphs defoliate and sometimes strip the bark of cassava completely. Tuber yield is reduced significantly by defoliation only towards the end of the dry season after natural leaf regeneration has begun. The damaging stages are from three-instar nymph to adults.		
	Defoliation of leaves of up to seven months old cassava can cause 60% reduction in yield but above nine months old cassava, little or no reduction in tuber yield occurs.	source: https://link.springer.com	
Cassava Mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae)	They may attack the growing points of the plant, later the leaves senesce and fall, sometimes accompanied by die bark of the shoot.		
	Attack on stems results in stunted growth of shoots with highly reduced internodes possibly due to introduction of a toxin.		
	Damage is greater in late planted crop than early planted because high pest infestation during the dry season occurs when the tubers have not yet formed. In early-planted cassava most of the tubers are formed before high pest abundance.	source:https://www.researchgate.net/fi gure/Cassava-mealy-bug-Phenacoccus- manihoti-Homoptera-Pseudococcidae- Matile-Ferrero fig1 233523958	
Striped mealybug (Ferrisia virgata), Green mealybug (Phenacoccus	These are indigenous minor pests which suck sap of cassava plants but do not inject poison into the plants.		
madeirensis)	Severely attacked plants show general symptoms of weakness and stunting, but do not show leaf distortion.	source: https://mrec.ifas.ufl.edu/lso/mea lybug	
The green spider mite, Mononychellus tanajoa	Feeding on young leaves causes shrivelling, deformation and drying up of the leaves.		
	Young shoots die, the whole plant becomes shrunken and deformed with a greatly reduced tuber yield.	source: https://www.researchgate.net	

	Damage is most serious in the dry season.	
White flies Bemisia tabaci	Adults suck sap and secrete copious amounts of honeydew to cover the leaves and stem with sooty moulds. Affected leaves dry and drop.	Source: https://en.wikipedia.org/wiki/Silverleaf_whitefly
Termites (Macrotermes and Odontermes species)	Termites are occasional pests, particulary under very dry conditions. They attack cassava planted late or during the dry season. They can destroy the whole rooting system	Source: http://termitesandants.blogspot.com/2011/10/odontotermes-sp3.html
Millipes (Myriapoda)	These are occasional pests which bore into cassava tubers and feed, causing secondary infection that may lead to roting.	Source: https://www.agefotostock.com/age/fr/Stock-Images/Rights-Managed/IBR-4292572

Source: PPRSD (2015), Pests' list of Ghana (unpublished)

Table 6: Major Insect Pests and Diseases of Yam (Dioscorea Sp)

Major Insect pests and Diseases	Damage	Illustration
The yam beetle, Heteroligus meles and Prionoryctes spp(Coleoptera: Scarabaeidae)	In Ghana, yam tuber beetles can cause serious economic losses by making extensive feeding holes in the yam tubers, often only just before harvest.	Source: https://unmondeencouleurs.piwigo.com/index?/category/5442-eophileurus_arrow_1908
Leaf beetles Crioceris livida and Lema armata	Yam leaves beetles are occasional pests and do not usually cause any serious problem.	Source: http://scanbugs.org/portal/taxa/index.php?taxauthid=1&taxon=CHRYSOMELIDAE&cl=68
Termites, Microtermes spp.	Termites are occasionally serious pests of yam in Ghana. They burrow into the developing tubers and make a network of tunnels that are invisible until the tuber is cut.	Source: https://home.czu.cz/en/sobotnik

		<u>/termiti</u>
Scale insects Aspidiella hartii	Yam scale insects mainly attack tubers in storage. They suck the sap causing shriveling and also promote attack by fungal rots, and can inhibit subsequent germination of tubers. Occassional severe infestation can kill young shoots in the field.	Source: https://www.researchgate.net/publication/282798387 Les Arthropodescontinentaux de Guadeloupe Petites Antilles Synthese bibliographique pour un etat des lieux des connaissances
Yam nematodes- The important species of yam nematodes are the spiral nematode Scutellonema bradys, the liesion nematode Pratylenchus spp. and the root knot nematode Meloidogyne spp.	Infections by above-ground yam nematodes are rarely noticed in the field, except occasionally as a general chlorosis and stunting of yam vines.	Source: http://www.pestnet.org/SummariesofMessages/Pests/PestsEntities/Nematodes/Pratylenchus, Dioscoraealata, SolomonIsPNG.aspx

Source: PPRSD (2015), Pests' list of Ghana (unpublished)

Table 7: Major Insect Pests and Diseases of Sweet Potatao (Ipomoea Batatus Poir.)

	Damage	Illustration
Variegated grasshopper, Zonocerus variegatus	Adults and nymphs defoliate and sometimes strip the bark of cassava completely. Tuber yield is reduced significantly by defoliation only towards the end of the dry season after natural leaf regeneration has begun. The damaging stages are from three-instar nymph to adults.	Source: https://www.alamy.com/stock-photo-variegated-grasshopper-zonocerus-variegatus-acrididae-final-instar-20500046.html
	Defoliation of leaves of up to seven months old cassava can cause 60% reduction in yield but above nine months old cassava, little or no reduction in tuber yield occurs.	
Cassava Mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae)	They may attack the growing points of the plant, later the leaves senesce and fall, sometimes accompanied by die bark of the shoot. Attack on stems results in stunted growth of shoots with highly reduced internodes possibly due to introduction of a toxin.	
	Damage is greater in late planted crop than early planted because high pest infestation during the dry season occurs when the tubers have not yet formed. In early-planted cassava most of the tubers are formed before high pest abundance.	Source: http://rachel.golearn.us/module s/eninfonet/export/default\$ct\$94\$pests .html

Striped mealybug (Ferrisia virgata), Green mealybug (Phenacoccus madeirensis)	These are indigenous minor pests which suck sap of cassava plants but do not inject poison into the plants. Severely attacked plants show general symptoms of weakness and stunting, but do not show leaf distortion.	Source: https://mrec.ifas.ufl.edu/lso/Mealybugs.htm
Mites-Several mite species attack sweet potato. <i>Aceria</i> spp is a tiny whitish mite and causes leaf blister on sweet potato	4.0 The feeding of the mite induces the epidermis of the young shoots to form a dense growth, which covers the tips of the stem and young leaves. The infested stems are short and abnormally thick. Yield may be reduced by 80% in severe attacks.	Source: http://ftpmirror.your.org/pub/misc/cd3wd/1004/ag crops 5 bv en lp
Nematodes- Important nematodes, which attack sweet potato are root knot nematode Meloidogyne spp, Rotylenchus reniformisandDitylen chus spp.	Like <i>R. reinformis</i> , it causes the splitting of the tuber-forming roots. Ditylenchus spp is endoparasitic nematode which produces necrosis on the tubers	Source: https://nematodeblog.wordpress.com/

4.1.2. <u>Major insect pests and diseases of Cereals – Maize, Rice and Sorghum</u>

Table 8: Major Insect Pests and Diseases of Maize

Major Insect pests and Diseases	Damage	Illustration
Armyworms (Spodoptera exempta)	Attack leaves	Source: http://www.theeastafrican.co.ke/scienc eandhealth/Call-for-GM-maize-to- fight-armyworm/.html
Larger grain borers (Prostephanus truncatus)	Attack stored maize grain	Source: http://www.infonetbiovision.or g/PlantHealth/MinorPests/Storage- pests-2

Greater grain weevil (Sitophilus spp.)	Attack stored maize grain	Source: https://alibdaapcc.com
Stem borers (Busseola fusca, Sesamia calamistis, Eldana saccharina)	Destruction of leaves and boring into stems	Source: http://sesamia.pagesperso- orange.fr/ForeursTigeMais.html
Maize streak virus (virus transmitted by insects known as leaf hoppers)	Can be recognized by the long white streaks on maize leaves, interrupted by yellow and white sections	Source: http://eol.org/pages/567/details
Striga (witchweed) (Striga hermonthica, S. asiatica)	Is a parasitic weed that grows on the roots of maize and prevents the crop from growing properly	Source: https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/Striga_hermonthica_(Purple_Wit_chweed).htm
Fall Army Worm (Spodoptera frugiperda)	Feeds on leaves and whorls of the plants especially maize.	Source: https://www.forestryimages.org/browse/detail.cfm?imgnum=1673034

Table 9: Major Insect Pests and Diseases of Rice

Major Insect pests and Diseases	Damage	Illustration
Armyworms (Spodoptera exempta)	Cause serious defoliation in upland rice plants, leaving only the stems. Are regarded as occasional pests but when there is outbreak they completely devastate farms	Source:https://fr.globalvoices.org/201

	7/06/21/211791/
bore into stems and up to the apical or lateral buds, feeding on the tissues of the buds. Attack young rice plants.	
Dark brown fly. Lay eggs at the base of rice plants and hatched maggots feed on the stem tissues.	Source: https://www.pinterest.com/pin/287526757443080127/
Caterpillars bore into the stem of rice, attack rice at full tillering stage prevent the grains from filling up and ripening. (e.g white borer, striped borer, pink borer and yellow borer)	Source: https://www.dailytrust.com.ng/news/agriculture/what-you-need-to-
	know-about-stem-borers- expert/165457.html
Most widespread and destructive disease. Affects all the leaves and stem of plant, starting with spots on leaves	Source: http://rstb.royalsocietypublishing.org/content/371/1709/20150467/
	F2
Fungus disease which starts as tiny brown spots on rice leaves. Attack seedlings more often.	Source: http://agritech.tnau.ac.in/crop
Attacked rice plants share well-	_protection/rice_diseases/rice_2.html
leaves and stunted growth	Source: https://www.usask.ca/agriculture/plantsci/winter-cereals/winter-wheat-production-manual/chapter-22/viruses.php
	or lateral buds, feeding on the tissues of the buds. Attack young rice plants. Dark brown fly. Lay eggs at the base of rice plants and hatched maggots feed on the stem tissues. Caterpillars bore into the stem of rice, attack rice at full tillering stage prevent the grains from filling up and ripening. (e.g white borer, striped borer, pink borer and yellow borer) Most widespread and destructive disease. Affects all the leaves and stem of plant, starting with spots on leaves Fungus disease which starts as tiny brown spots on rice leaves. Attack seedlings more often.

Table 10:Major Insect Pests and Diseases of Sorghum

Major Insect pests and Diseases	Damage	Illustration
Armyworms	Attack leaves	

(Spodoptera exempta)		
Greater grain weevil (Sitophilus spp.)	Attack stored sorghum grains	
Sorghum shoot flies (Atherigona soccata)	Most important insect pest of sorghum seedlings. White larvae of sorghum shoot fly bore into the seedlings and feed inside. Result in 'deadhearts' phenomenon.	Source:
Sorghum midges (Contarinia sorghicola)	Pest sucks developing seeds and removes all contents. Adults lay eggs inside flowering heads and small orange larvae that hatch feed on developing seeds.	Source: https://agrobaseapp.com/australia/pest/sorghum-midge
Stem borers (Busseola fusca, Sesamia calamistis, Eldana saccharina)	Destruction of leaves and boring into stems. Same species which attach maize, millet also attach sorghum.	
Downy mildew (Sclerospora sorghi)	Fungus disease causes dwarfing or reduction of upper internodes. Results in 'crazy top' phenomenon.	Source: http://www.guaminsects.net/gisac2015/index.php?title=Sclerospora sorghi
Striga (witchweed)	Is a parasitic weed that grows on the	
(Striga hermonthica, S. asiatica)	roots of sorghum plants and prevents the crop from growing properly	

PPRSD (2015), Pests' list of Ghana (unpublished)

4.1.3. Major insect Pests of Legume- Soybean

Table 11:Major Insect Pests and Diseases of Soya Bean

Major Insect pests and	Damage	Illustration
Diseases		
Aphids (Aphis craccivora and other species)	Small, soft round, black or green insects that suck the sap of the young succulent green parts (leaves, stems and green pods) of the plant	Source: http://www.infonet-biovision.org/PlantHealth/Pests/Aphids
Storage mothss (Ephestia cantella, Corcyra cephabonica)	Two species of moths attack soybean seeds in storage. The caterpillars of these moths feed on the grains, causing extensive damage by weaving threads around the grains, reducing their quality.	
Storage weevils (Callosobruchus maculates)	Storage weevils attack soybean during storage	Source: https://www.learnaboutna ture.com/insects/beetles/get-rid- of-weevils/
Sucking bugs (Anoplocnemis spp., Clavigralla spp. and other species)	Same group of six insect species that attack cowpea also attack soybean plants	Source: http://animal.memozee.co m/view.php?tid=2&did=12075&l ang=kr
Anthracnose disease (Colletotrichum truncatum)	Disease affects all the growth stages of soybean. Attacks from stem and later appears on pods and petioles as irregularly shaped brown areas. The infected areas then become covered with a black dust and necrosis occurs in the leaves.	

PPRSD (2015), Pests' list of Ghana (unpublished)

4.1.4. Major Insect Pests and Diseases of Vegetables- Pepper Okra & Tomato

It is widely accepted that vegetables are important component of a healthy diet and that the consumption can help prevent a wide range of diseases. WHO/FAO recommends a minimum of 400g of fruit and vegetables per day for the prevention of chronic diseases such as heart disease, cancer, diabetes and obesity, as well as for the prevention and alleviation of several micronutrient deficiencies, especially in less developed countries. Fruit and vegetable crops generate more income for farmers compared to traditional staple crops. In addition, they generate employment for the rural workers, and therefore improve access to food (Weinberger and Lumpkin, 2007). As a result poverty rates are much

lower among workers employed in the vegetable sector therefore a contributing factor to reducing food insecurity in developing countries.

The table below is some major pest and diseases that attack some selected vegetables;

Table 12:Major Insect Pests and Diseases of Pepper

Major Insect pests and	Damage	Illustration
Diseases		
Root-knot nematodes (Meloidogyne spp)	Are same nematodes that attack eggplant and okra. Affected roots develops gall become malformed inhibiting plant growth; leaves become yellow, then curl and drop off before they mature. Pepper plants attacked by nematodes are also easily infected by wilt diseases and attacked by termites	Source:
White flies (Bemisia tabaci) and Aphids (Ahis gossypii)	White flies and aphids are important as vectors of virus diseases. Same aphids attack cabbage and same white flies attack tomatoes	Source:
Leaf spot (Cercospora capsicii)	Disease affects mainly leaves of pepper seedlings. Initial symptoms are small dark spots on leaves and these spots later enlarge to cover whole leaf, causing leaf to turn yellow and drop off.	Source:
Pepper leaf curl mosaic virus	Virus disease infects pepper leaves, stems and fruits and is transmitted by white flies. Leaves become yellow, mottled, distorted, small and cup-	Source: https://phys.org/news/201 7-01-secret-weapon-insect- transmitted-viruses-exposed.html

PPRSD (2015), Pests' list of Ghana (unpublished)

Table 13: Major insect pests and diseases of Okra

Major Insect pests and	Damage	Illustration
Diseases		
Aphids (Aphis gossypii, Myzus persicae)	Several species of aphids affect okra leaves and young fruits. Are very small, light to dark green, round insects that suck sap from okra leaves, causing leaves to turn yellow and become twisted; later plants may wilt and die	
Cotton stainers (Dysdercus spp.) and other sucking bugs (Nezara viridula)	Cotton stainer adults and nymphs are very common on okra plants at fruiting stage and abundant during dry season. When strainers attack mature fruits, they damage the seeds. The bugs are conspicuously red, with black bands. They pierce through both young and mature fruits and suck the seeds inside. Attacked fruits shrivel and then fall.	Source:http://what-when-

	Other bugs that attack okra plants are stink bugs and shield bugs. These bugs make feeding holes in okra fruits causing necrosis and these results in spotting, deformation and shedding of fruits.	how.com/insects/prosorrhyncha- heteroptera-and-coleorrhyncha- insects/
Flea beetles (Nisotra spp., Podagrica spp.)	Very common pest that occur on almost all okra plants. Feed on okra leaves and make many small holes in the leaves	
		Source:http://www.discoverlife.org/ mp/20q?search=Chrysomelidae&fla gs=col3:glean:&res=320
Root-knot nematodes (Meloidogyne spp.)	Several species of soil-living root-not nematodes are major pests of okra plants. These same species also attack egg plant, tomato, pepper, cabbage, carrot and other vegetables. Form swellings known as galls and other malformations on okra roots. Plant become stunted and may die	
Anthracnose disease (Colletotrichum spp.)	Disease affects leaves of okra, on which dark necrotic spots will begin to appear; later leaves become badly wrinkled and are then completely destroyed. Sometimes affects petioles of okra flowers and fruits causing many to drop off.	
Leaf curl virus and mosaic virus	Okra suffers from these two major virus diseases. In affected plants, leaves become small, cup-shaped and/ or yellow (chlorotic), mottled	Source: https://www.revolvy.com/main/inde x.php?s=Mosaic+virus

Table 14: Major insect pests and diseases of Tomato

able 14: Major insect pests and diseases of Tomato		
Major Insect pests and	Damage	Illustration
Diseases		
Aphids (Aphis gossypii)	Occasionally attack tomato heavily. Feed on the soft terminal shoots and on the underside of leaves. May also transmit virus disease during feeding. Honeydew produced by aphids' cause's unsightly black moulds on tomatoes which reduces their market value. Attacked plants may wilt and die	
Fruit borers (American bollworms [Helicoverpa armigera] and leaf-eating caterpillars (cotton leafworms [Spodoptera littoralis])	Different kinds of caterpillars attack developing and mature fruits of tomato. The American bollworm comes in various colours. A single caterpillar can bore into m ay tomato fruits in one night. Fungi and bacteria enter these fruits through the holes and cause the fruits to	

	rot and become worthless. The cotton leaf worm feeds on leaves of tomato and bores into the fruits, especially those lower down the plant	Source: http://www.infonet-biovision.org/PlantHealth/Pests/Anthracnose
Fruit fly (Rhagoletisochraspis)	It is an important pest of tomato at the fruiting stage. It pierces fruits and leaves rotten spots. Adult fly pierces fruit to lay eggs inside. The small white maggots or larvae develop in the fruit and pupation occurs in the soil below the host plant.	Source: http://www.omafra.gov.on.ca/french/crops/facts/05-070.htm

4.1.5. <u>Seed borne pests identified in the Seed Laboratory</u>

In general, major pests detected in imported seeds that have been sampled and tested in the laboratory are small. Because most of them are well treated. Only a few pests were identified in the local seeds sampled in the dealer's shops, which include the following: Sitophyluszeamais and Triboliumcastaneun.

4.1.6. <u>Common pests' problems</u>

Common pests problems in the project areas include: rodents and migratory and outbreak pests such as birds, locusts and armyworms. IPM strategies are recommended and used by some farmers as much as it is possible because there is no one controls practice/measure that can provide acceptable control of the target pest.

Table 15: The following table presents common pests for target crops

Common Pests	Crop affected	Damage/symptom	Current situation	Recommendation for
Common rests	Crop affected	Damage/symptom	Current Situation	
				crop protection and
				the environment
Rodents (rattus	Maize, millets,	At the pre-harvest stage,	Regular surveillance:	 Weeding for clean
rattus)	paddy and	maize is attacked at planting		bunds and fields
,	cassava	(the rodents retrieve sown	-Sanitation	
		seeds from the soil causing		
		spatial germination). The	-Trapping	
		rodents cut and eat the fresh	11 0	
		stems and parts of the	rodenticide	
		panicle.	Predation: Keep cats	
		pamere.		
			in stores and	
			homesteads.	
Migratory and outbreak pests				
Bird (weaver	Rice, maize,	The sucking of juice from	Traditional methods,	
birds and the	sorghum and	grains or the removal of		
quelea quelea)	millet.	whole grains from the	and scarecrows, are	
qquereus		plant's spike.	still being used in	
		piulit o opike.	many parts	
			many parts	

Locust	Maize, wheat sorghum, rice and millets)	During periods with favourable weather, locusts multiply rapidly and form large swarms that can cause huge damage to plants in a very short period of time.	There being no research done on the management of the pest, farmers are forced to use any recommended insecticide whenever outbreaks occur.	
Armyworm	Maize, rice, sorghum and millets), bétail	Larval outbreaks can appear suddenly at alarming densities, catching farmers unawares and unprepared.	Insect traps	Its control combines monitoring in identified breeding areas, forecasting and early warning of potential outbreaks and release of stock of insecticides to all regions to combat these noxious pests.
Invasive alien species:	Maize, cassava and plantain, savannahs and tropical forests, in fresh water	Invasive alien species Eutrophication phenomenon	Mechanical fight	Frequent pest risk surveillance and continuous updating of the existing pest list.

4.1.7. <u>Major Pests and disease encountered in animal production-small ruminants-poultry-cow</u>

In order to strengthen Ghana's capacity to produce more meat to reduce the country's meat deficit and increase farmers' incomes, VSD has used various strategies across the country to control and contain outbreaks of listed diseases. These included spatial strategies such as movement prohibition, quarantine, restriction, regulatory services, and encouragement of community participation and non-spatial strategies of animal health programs such as immunization and immunization. prophylactic treatments.

The following diseases have been detected and controlled effectively: anthrax in the northern and western regions; African swine fever on the western borders of the country (Brong Ahafo, Upper West Region and Western); contagious bovine pleuropneumonia (CBPP) and small ruminant plague (PPR) in all regions; Brucellosis in Brong Ahafo and in the Western Region.

According to the veterinary services, the most frequently observed diseases in the field of animal protection are the following:

- Anthrax is an acute infectious disease caused by the bacterium Bacillus anthracis. It is a zoonosis especially ruminants that can be transmitted to humans in many ways, by spores (form of resistance of the bacteria) or by contaminated meat.
- Ovine and caprine brucellosis (excluding Brucella ovis infection) is mainly caused by the bacterium B. melitensis. Brucellosis is transmitted to humans, in whom it causes an acute febrile syndrome (waving fever) that can progress to a more chronic form and also induce serious joint, cardiovascular or neurological complications. Infection is often linked to occupational exposure: veterinarians, slaughterhouse staff and breeders handling infected animals and abortions or placentas are most at risk. In this case, the transmission is particularly by the oral, conjunctival or respiratory. (www.gdscentre.fr/index.php/sante-animal).

- PPR is a highly contagious viral disease of sheep and goats.
- Blackleg is a disease that affects small ruminants (sheep, goats), pigs and cattle.
- Infectious bursal disease (Gumboro), a contagious avian viral disease, and fowl pox occur in commercial poultry.
- Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV).
- Contagious bovine pleuropneumonia (CBPP) is an important bovine disease caused by Mycoplasma mycoides ssp. Mycoides (M. mycoides).

4.2. Public Health Context: Malaria

Vector transmitted diseases (VTD): malaria (Anopheses gambiae) bilharziosis (Schistosoma onchocercose (Onchocerca Haematobi um). volvulus volvulu). lymphatic filariose (Wuchewriabancrofti), the arboviroses (Aedes furcifer, Aedes luteocephalus, Aedes taylori, Aedes neo africanus Aedes vitatus and Aedes aegypti), dracunculose (Dracunculus medinensis), and the african human trypanomiasis (THA) (Glossina palpalis gambiensis, Glossina morsitans submorsitans) constitute a major health problem in West AfricaSenegal, Burkina, Mali, and Ghana have several programmes to combat these diseases combining curative measures, which target the parasite with preventive measures integrating anti-vector operations, which for a long time depended exclusively on the use of insecticides having consequences on the environment.

This strategy follows from the WHO resolution 50.13 on chemical security adopted at the 50th World Health Assembly, which urged member States to "take measures to reduce dependence on insecticides, to combat vector diseases through the promotion of integrated approaches of fight against vectors in accordance with these directives".

In fact, it resulted in the adoption of the Integrated Vector Management (IVM) by the WHO Regional Office for Africa (WHO/AFR) during its workshop, held in Harare (Zimbabwe) in February 2001, as a strategic approach to reduce the morbidity and mortality associated with vector diseases. A regional elaboration and implementation framework was set up to that effect.

This strategy can be adopted by the WAATP program given that it utilizes the combination of technological means to arrive at a reduction or a suppression of vectors, with such a low impact on the environment. The permeation of mosquito nets, curtains and other materials with insecticides, as well as larva control, pest control are included in this program.

In Ghana, malaria accounts for 40% of medical consultations cases. Nonetheless, a decrease in the number of cases was observed between 2004 and 2005 concomitant with the decrease in the number of cases among infants of less than 5 years of age and among pregnant women.

4.3. Pesticides Used in Program Areas

Ghana has on the one hand, a list of registered pesticides and the other hand, that of banned pesticides (negative list). These pesticides are tested and appreciated; In order to improve the quality of the pesticides used (the reduction of the toxicity and the increase of the efficiency for example). Lists are regularly updated. The last update is from February 2017 (see appendix).

Exchanges with the Chemical Protection and Management Center (CCMC) from the Environmental Protection Agency (EPA) indicate that registered products are popularized at the level of producers of the targeted crops.

There is also the use of unregistered pesticides in certain areas of the country, coming from some neighboring countries such as Côte d'Ivoire according to the exchanges with the technical services (CCMC).

Unfortunately, there are several reasons for the use of pesticides not approved by farmers. It is:

- their reduced cost compared to approved pesticides;

- their availability from producers (sold on local markets);
- access to pesticides approved for food crops that remains difficult (in terms of proximity).

Table 16: Summary of Register of Pesticides as at February 2017

Category	FRE	PCL	Banned	Total
Insecticides	153	51	32	236
Fungicides	59	15	0	74
Herbicides	173	50	0	223
Plant Growth Regulators	8	2	0	10
Molluscicide	1	0	0	1
Rodenticides	0	2	0	2
Nematicides	4	2	0	6
Adjuvants	5	0	0	5
Biocides	11	0	0	11
Repellents	0	1	0	1
Total	414	123	32	569

Table 17: Legend to Register of Pesticide

FRE - Full Registration (valid for 3 years)	The Agency may approve and register a pesticide subject to such other conditions as it may determine and may only register a pesticide if it is satisfied that the pesticide is safe and effective for the use for which it is intended and that the pesticide has been tested for efficacy and safety under local conditions (Section 31, Part II of Act 490)
PCL - Provisional Clearance Permit (Valid for a maximum of 1 year)	Where in respect of an application for registration of a pesticide, the Agency is satisfied that most information required for its registration has been provided to the Agency, and the pesticide does not present a toxicological risk to people, animals, crops or the environment, it may clear the pesticide for use without the registration, and this clearance shall be known as provisional clearance and shall be temporary pending the registration by the Agency of the pesticide (Section 32, Part II of Act 490)
Experimental permit	The Agency may authorize the importation of unregistered pesticide if the pesticide is imported for experimental or research purposes and not for distribution Section 28, (2), (a), (i).
General use pesticides (G)	Pesticides when applied for the use for which it is registered will not have unreasonable adverse effects on people, animals, crops or on the environment (Section 30 (1), (a) of Part II of Act 490)
Restricted use pesticides (R)	Pesticide when used in accordance with widespread commonly recognized practice in the absence of additional regulatory restrictions may cause unreasonable adverse effect on people, animals, crops or on the environment (section 30 (1), (b) of Part II of Act 490). Such pesticides are restricted for use on only selected crops by competent pesticide applicators and should be sold by dealers licensed to handle restricted pesticides
Suspended or Banned Pesticides	Pesticide when used in accordance with widespread commonly recognized practice even in the presence of additional regulatory restrictions will cause unreasonable adverse effect on people, animals, crops or on the environment. Such pesticides are prohibited for use in the country (Section 30, (1), (c).

Source: EPA/CCMC, 2018

4.4. Developed Strategies for Crop Pest Control and Animal Production

4.4.1. <u>Integrated Pest Management Approaches</u>

Integrated pest management or integrated management is a strategy adopted for the control of pests in an efficient and economical way, while respecting the environment. It aims to reduce pesticide residues in fruits and crops and maintain pests at a tolerable level in the context of sustainable agriculture. Integrated pest management aims to combine all possible and useful control methods against the pest while considering the use of chemical pesticides as a last resort. Thus, several control methods are available: biological control; cultural (agronomic) control, reasoned chemical control, varietal selection; mechanical fight, the Genetic fight and the legislative fight.

4.4.1.1Preventive fight

Preventive control is more important for pests such as locusts. With the help of international cooperation, prospecting teams are working during the indicated periods of the year in order to follow the evolution of the situation of the populations. Surveillance of other agricultural pests is the responsibility of farmers. However, plant protection services also identify pests to determine areas at risk of infestation that compromise food security.

At the population level, preventive control consists of the destruction of the causative agent in the fields of the target and surrounding crops. Populations also use crushed neem grains with oil to prevent insect attack.

The following methods can be used for preventive control:

- **Prophylactic measures:** In many crops, seeds are used as propagation material. They can be contaminated (internally and externally) by fungi, bacteria, viruses and nematodes. These parasites will develop with the germination and growth of plants. Prophylactic measures consist of:
 - use only seeds, seedlings, discards or tubers of known and certified origin produced by official bodies. The seeds can be disinfected, by fumigation or by coating;
 - choose soils with good natural drainage, suitable for planting;
 - destroy the residues of previous crops. Plant residues (stems, roots) or even fruits and tubers that remain in the plots after harvest often contain pests or diseases, thus constituting a source of infestation for the next crop. Indeed, parasites can survive during the dry season and infest the next crop. It is recommended to (i) burn stems and stubble, (ii) compost with residues;
 - rotate crops, ie plant crops that do not have any pests in common (rotation of cereals with root and tuber crops). Crop rotation prevents the proliferation of diseases and pests by breaking their development cycle;
 - make physical barriers by protecting crops from pest attack by nets. Vertical nets, insect-proof plastic films, silica-based inert powders with abrasive and drying properties.
- Genetic control: This control technique is based on the use of resistant or disease tolerant varieties. The cultivation of resistant varieties is the simplest and often least costly solution for the farmer in his fight against plant diseases. In the absence of adequate resistance characteristics, the tolerance can be used, with the proviso that tolerant plants can be infected and serve as a reservoir of germs and therefore a source of contamination for sensitive varieties.

- Cultural or agronomic control: it is carried out by the adoption of favorable cultural techniques. These include: (i) plowing, (ii) adequate cropping system, (iii) good date of planting or planting, (iv) cover crops, (v) weeding, (vi) associated crop.
- **Biological control:** Biological control is a method of pest control of crops (insects, mites, rodents, etc.), diseases (fungal, bacterial, viral, etc.) or weeds (weeds) by means of living organisms' antagonists, called biological control agents or auxiliaries of crops. Biological control ensures the preservation of fauna or flora useful (create environments favorable to the development of auxiliaries.).

An auxiliary is defined as a predatory or parasitic animal that, by its way of life, assists in the destruction of pests that are harmful to crops. Most of these auxiliaries are insects (usually wasps), and a small proportion of nematodes and mites. Auxiliary organisms have demographics related to those of the populations of their "hosts". They are dependent on the density of the pest populations (disease, pest and weed).

Predation, competition and parasitism of the auxiliaries are the main biotic factors that influence the evolution of pests, and control the stability of their populations. When the auxiliary and pest (pest) populations are in equilibrium, they are active auxiliaries that play a regulating role and prevent outbreaks.

Environmental management is based on two complementary practices:

- *planting hedges*: predators need this resource to reach sexual maturity and thus reproduce, providing prey / replacement hosts, shelter during work or treatment on the plot.
- The creation of grass strips: the implementation of grass strips is relatively simple, inexpensive and their impact is fast. Different and complementary devices can be set up according to the auxiliaries that one seeks to promote. Grass strips make it possible to meet the specific requirements (varieties of pollen, nectar) of many auxiliaries, to give them easier access to these resources, and to attract them to the immediate vicinity of crops.

4.4.1.2 Curative fight

With regard to curative control, locust invasions are managed at the national or even sub-regional level. With regard to other pests, farmers facing pest problems are getting closer to the competent MoFA services to eventually receive control advice that they will apply in the field. Also, decentralized plant protection services play a very important advisory role at this level. Neem grains and other pesticide mixtures help control the diseases and pests identified in the target crops. The healing methods are as follows:

- **Mechanical control**: There are a number of physical processes that can reduce parasite populations or bio-aggressors when they are already installed in cultivated plots:
 - Destruction of diseased or infested plants: This method is particularly indicated in cases where there is a disease that can disperse quickly in the plots (fungi, viruses, nematodes ...). It is the case of fruit fly (Rhagoletisochraspis) for tomato crops. Plants affected by the disease should be isolated, desiccated and buried or incinerated; Plants affected by the disease should be isolated, desiccated and buried or incinerated;
 - Trapping pests (insects and rodents): it is achieved by the installation of traps classic (trapping live animals) type box with a rocking input system. It is a very effective method

but quite restrictive and time consuming (takes time). Trapping is also used to estimate a population of animals (rodents) on a plot;

- Pickup
- Harvest or sanitary size.
- **Biological control**: it is also used in curative by techniques such as:
 - Inundative release of auxiliary or predatory insects, and parasitoid: In all ecosystems, there are organisms called "auxiliaries" which are natural enemies of "pests". Biological control consists in favoring the populations of these auxiliaries by releases. This keeps the "pest" populations under control. An example is the Trichogram flood release to control sugar cane drillers.
 - *Plant extracts or biopesticides*: Many plants produce insecticidal substances that can be sprayed on crops after extraction. It is a preparation based on Neem, Tobacco and papaya leaf. In Ghana, very few programs are being developed to initiate experimentation with the use of biological pesticides.

In addition, subregional initiatives led by structures such as ITRA and ICAT in Togo have led to convincing results. The use of chemical pesticides is replaced by biocidal plant extracts such as "neem" (*Azadirachta indica*), *Lannea microcarpa*, red pepper, cow dung, etc., which are used as a natural pesticide.

ITRA has particularly initiated the experimentation of the use of biological pesticides (especially extracts of the leaves of "neem" or *Azadirachta indica*) on vegetable crops. However, certain constraints have been encountered in the purification of the molecule extracted from the "neem". The difficulties of using these approaches by farmers are related to the availability of neem leaves and grains and the influence of climatic conditions in coastal areas. Other promising tests were also made from papaya leaf extracts. These different results of proven initiatives could be capitalized as part of integrated pest management in Ghana.

• Reasonable chemical control: the rational use of pesticides, ie the application of pesticides at effective doses during treatments that are as few as desirable, carried out at the most appropriate times and with the required treatment equipment. This control method has the advantage of (i) effectively protecting its crop and harvest, (ii) respecting maximum pesticide residue limits (MRLs), (iii) improving its income by reducing the use of inputs (fertilizer and especially pesticides).

4.5. Alternatives to pesticides

Alternatives to POPs (Persistent Organic Pollutants) have been developed with the aim of reducing the use of pesticides in agriculture in particular and the areas of use of these pesticides. These alternatives are the legislative or administrative struggle, cultural control, physical control, genetic control, integrated pest management, the use of bio-pesticides, biological control, the use of pesticides of the organophosphorus family, carbamates, Pyrethroids, etc.

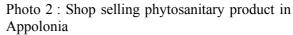
Some forms of control are being tested and are alternatives to POPs pesticides. Many other plants (garlic, pepper, onion, tobacco, pyrethrum...) are also used as bio-pesticides and research is continuing. Research is ongoing to test bio-pesticides on cashew nuts. The results of this research will make it possible to propose actions of information and sensitization of the populations on the necessity to use these bio-pesticides.

The exchanges with the populations of the different sites of the Program show that they have a good knowledge of alternatives to pesticides. Practices such as the use of neem grains, or bark of caïlédrat as bio-pesticides in market gardening; the use of oxen or goats excrement to protect crops against ruminants; sands, ashes, chilli powder for the preservation of corn, and others (powders of mahogany bark, neem leaves) are mentioned during the exchanges. The populations are also aware of cultural

techniques (cultural association, crop rotation, transplanting, organic manure, etc.). However, the preference for chemical pesticides lies in their efficiency and availability (to treat large areas) compared to these alternative methods.

Area of use	POPs pesticides	Alternative
Area of use	Aldrine, Chlordane,	 Organophosphorus, pyrethroid, and other new generations of agricultural insecticides; Cultural practices aimed at reducing the pest population and promoting the natural enemies of these pests (combination of crops, rotation and rotation in time and space, varietal choice, timing of the sowing period to make them less vulnerable to pest attack); Practical physical control (burning of parasitic plants, disinfection of soil with water vapor, use of mechanical
Agriculture	Dieldrine, Endrine, Heptachlore, DDT, Hexachlorobenzène	traps, sun drying of foodstuffs before storage, systematic destruction of products, highly infested or infected plants, weeding good time); - Practice of biological control (use of organismsnatural enemies to control crop pests and the use of conventional or repellent insecticides); - Practice of genetic control (use of resistant or tolerant varieties); - Use of bio-pesticides (neem seed porridge, fermented neem leaf solution, neem leaf powder, neem seed oil, papaya leaf,
Animal	Aldrine, Dieldrine,	dried pepper, garlic and onion extracts). - Organophosphorus, pyrethroid, and other new generations of insecticides for veterinary use;
health	Endrine, DDT	Hygiene measures to be observed and quarantined;Use of plants with proven bio-activity.

4.6. Pesticide management approaches


4.6.1. Pesticide distribution channels

In Ghana, there are three (3) stakeholder groups in the field of plant protection products:

- Group 1: Importers comprised of the main firms grouped into CropLife-Ghana (16) and Ghana Agri Input Dealers Association (GAIDA) and Pesticides Importers Association;
- Group 2: Distributors and Resellersand their intermediaries;
- Group 3: Approved Applicators (are not part of the distribution chain).

Phytosanitary firms that formulate and repackage are considered as industrial units. As such, they do not distribute pesticides; except if they are in addition, approved as Distributors by the Pesticides Technical Committee. This distribution is done through specialized department stores, mixed department stores, market kiosks, the informal sector and internal distributors of pesticides. Shops selling approved pesticides are usually in urban centers, sometimes with relay distributors in some villages.

Photo 1: Shop selling registered phytosanitary product in Abokobi

Access to products by farmers is difficult when there is no distributor nearby; and, moreover, their cost is high according to the farmers. This situation creates fertile ground for the spread of unregistered pesticides that enter the country illegally from foreigner countries. These hazardous products are exposed in local markets without any standards, and at lower costs than the first ones. The indications (label) are very often in a foreign language. Given their affordability, farmers are turning to these unregistered products, with or without knowledge of the potential consequences for human health and the environment.

The lack of protection of Distributors against fires and accidental leaks due to the mishandling of pesticides as well as disordered and sometimes inadequate storage at the farmer's level are all problems related to the distribution and use of pesticides.

In the same way, pesticides are most often transported to secondary centers and villages from public transport vehicles, exposing passengers to certain dangers. In addition, the lack of storage standards is a major concern.

4.6.2. Pesticide storage devices

All the activities of the actors of the pesticide industry (importers, distributors, resellers and applicators) are approved by the Pesticides Technical Committee. In addition, these actors have storage warehouses.

The finding is that agricultural producers in general, and in particular targeted crops, generally do not have adequate pesticide storage facilities. At the population level, the storage system is not compliant, which exposes populations, especially children, to the risk of intoxication. Indeed, these producers keep the pesticides, for the majority of the people questioned, in the homes, even in the rooms. Some say they keep (hide) their stocks in stores or in their fields or in the attics.

4.6.3. Application methods of phytosanitary products

Farmers spray pesticides themselves, but only very few have received adequate training in this area. It should also be noted that protection is deficient, especially when it comes to powder. Dusting by hand, without gloves or protection mask has adverse consequences for the health of the applicator and that of his assistants.

The products are applied using a UBV sprayer ("Ultra LowVolume" spray) after obtaining the slurry (Preparation resulting from the dilution of the concentrated product in water). There, too, the dosages are not mastered by farmers and who most often take these dosages of local dealers of phytosanitary products.

Exchanges with the populations have shown that some of them have received training from the PPRSD / MoFA. But this remains insufficient, according to farmers, and is confirmed through their protective equipment that is often rudimentary (masks and ordinary dress) and inadequate dosages.

One of the major risks of pesticide use in the program area is its use in the field of hunting and fishing. Indeed, it happens that some ill-intentioned and greedy farmers of easy gain do not hesitate to use plant protection products to fish or hunt, endangering the lives of consumers as a result of serious cases of food poisoning.

They are also used for non-recommended treatments: for example in the field treatments or stockpiles of cowpea, maize, starchy foods with products intended for the treatment of cotton. These are also causes of serious food poisoning.

Pesticides are also used for controlling insects in poultry houses or treating fleas on cattle. Also, to protect themselves from theft, the main places of pesticide storage by farmers are their bedrooms, which is not without risk to health if only by inhalation.

In addition, documents to track the traceability of products used are rare or non-existent as well as the notification of the processes of use. All this could result in the existence of residues in the products with the difficulties of export flow.

4.6.4. Disposal device for obsolete pesticides and empty containers/packaging

4.6.4.1.Obsolete and expired pesticides

There is currently no industry and technology for the destruction of obsolete and outdated pesticides in Ghana. Obsolete and outdated products are shipped abroad for processing. This was the case with an FAO project which was a technical assistance facilitated the removal of 25.6 metric tonnes (MT) of obsolete pesticides from the Temporal Storage Facility at Pokuase for onward destruction in Europe. It was however, a left over stock of 7 MT which has been safeguarded and is currently under storage at the Temporal Storage Facility.

Under the WAATP-Ghana, obsolete and outdated pesticides could be transported to RMG-Côte d'Ivoire SA where a disposal device exists, which may well receive this waste. This company has a modern industrial incinerator, suitable for the destruction of a number of particular wastes namely obsolete products, soiled packaging, sludge, used pallets, paper, cardboard and soiled rags and saturated activated carbons. Empty packages rinsed three times are pre-collected in sealed bags and sealed. The storage is done either in containers on an uncovered area, or in a room dedicated to obsolete products within RMG Côte d'Ivoire SA's factory. The phase of elimination consists in the destruction of the waste by incineration in a furnace of type HOVAL V 180 - BS 31 / TR8 and a furnace of type H.P 1000-12H1S. The destruction of organic and combustible substances by incineration consists in eliminating them at a very high temperature and reducing their weight and volume. This is the mode of disposal commonly used by FAO, UNEP and WHO.

4.6.4.2. Packaging/containers management at the farmer level

The management of pesticides containers is under the responsibility of resellers and farmers because of the retail sales system.

During exchanges with farmers and regional technical services, it appears that packaging is often reused by the population. Some farmers claim to destroy pesticide packaging after use by incineration, landfilling, perforation, etc. However, cases of mismanagement of these packaging still exist in the localities of the country. Metal or plastic or cardboard containers are reused to store the products (salt, oil, water, etc.). The corrosive aggressiveness of these products endangers the health of populations

and the environment. Photo 3 below illustrates an example of a wild deposit of empty pesticide packaging under a tomato greenhouse.

However, with big commercial farms or companies, management of pesticide containers are expected to be clearly stated in their environmental management plans (EMP) to the EPA. Usually, these companies indicated that they will liaise with the MoFA office, in particular the PPRSD to provide guidance to the disposal of the containers.

Equipment for the treatment of large empty containers are not known to be installed or in use in the country at the moment. Such equipments will be useful for the treatment of high capacity drums for recycling or reuse.

However, there are companies currently recycling empty pesticide containers such as: Pureplast Company Limited, located in Tema- Greater Accra Region and Cyclox Company Limited located in Central Region.

The FAO project mentioned above in the previous section did not transport pesticide empty containers as part of the obsolete stocks for destruction in Europe.

The empty containers were handled under a different activity in selected districts/ municipalities in five (5) regions of Ghana namely:

- Sefwi Wiawso Municipal Assembly-Western Region;
- Agogo District Assembly- Ashanti Region;
- Nkoranza Municipal Assembly Brong Ahafo Region;
- Begoro, Fanteakwa North Distric Assembly Eastern Region;
- Keta Municipal Assembly Volta Region.

There was an arrangement for farmers to put their empty containers/ packaging in recycle metal bins at selected locations in these districts above. The empty containers then transported to Pure Plast Recycling Company in Tema for recycling.

A collection and disposal system and cleaning of pesticide containers need to be put in place by PPRSD-MoFA and the EPA under the Program.

Photo 3: Empty pesticide packaging found in a greenhouse of tomato production in Abokobi

Source . D. Mooongon June 2016

4.7. Pest management option for target crops: Cereal; vegetable, root and tuber

These crops are mainly grown for the local market but have high economic returns for the family. Consequently; farmers are prone to rely on use of pesticides in the field and in storage to control pests

and diseases. Non-chemical methods are however available for the production of healthy products (Table 19 to 26). Farmers will also be trained in Agro-Ecosystems Analysis (AESA) as practiced in IPM-Farmers' Field Schools. So they can decide where and if pesticides used are necessary.

• Making IPM decisions using agro-ecosystem analysis (AESA)

Agro-ecosystem analysis (AESA) is based on a process of making observation in the environment where crops are growing, analysing the findings and, based on the findings, making decisions about appropriate crop management actions to take at the time. This tool is location-specific. This means that the action taken applies only to the particular pest or disease problem identified at that particular location at the time of the observations and decision.

In doing so, the AESA has the advantage of avoiding the systematic and regular application of pesticides by farmers.

• Procedure for conducting AESA

The procedure for conducting an AESA is quite simple and fast. AESA fits into a variety of participatory extension approaches as the central field tool. During an AESA, farmers are able to:

- Inspect crops weekly to monitor their growth and development;
- quickly detect the appearance of weeds, diseases and pests and make detailed observations on the biology of pests and their natural enemies;
- analyse crop production practices;
- adapt technologies to specific farmers needs;
- Make a decision on the cultural operations to be carried out by choosing the management approaches from a variety of options.

4.7.1.1. Cereals-rice, maize and sorghum

The tables below provide specific pests/diseases and Pest Management options including IPM strategies for rice and sova bean.

Table 19: Management of Insect Pests and Disease Of Rice

RICE (Oryza sativa	RICE (Oryza sativa)			
PLANT PROTECTION PROBLEM		CONTROL RECOMMENDATION		
Pest Names	Symptom or Damage	Cultural Practices and Direct		
		Interventions		
Seedling blight Corticium/Scleroti um rolfsii Fusarium spp.	Occasional disease. Affected plants grow slowly; leaves turn yellow and dry up due to a rot at the base of the stems, which becomes dark brown.	 Deep ploughing to bury crop debris reduces the disease. Use recommended chemicals for seed treatment and field sprays with appropriate fungicides and antibiotics (e.g. kasugamycin). 		
Brown leaf spot, Cochliobolus miyebeanus Bipolaris = (Helminthosporiu m oryzea)	Major disease. Affects coleoptiles and leaf blades, leaf sheaths and glumes but most commonly seen on leaves. Spots appear as minute brown dots becoming oval to circular with light brown, fawn or grey centre and dark or reddish margin. Seedlings are often more susceptible. Fungus is seed-borne.	 Careful use of fertilizer can do much to prevent the disease. Burn or feed stubbles after harvest (stubble management). Hot water seed treatment. 		

	Fungus may also attack the grains forming small oval spots on glumes. Heavy attack can result in blackening of the grains, which becomes lightweight with spotted hulls.	Seed treatment with appropriate fungicides.
Sheath blight, Corticium = Rhizoctonia oryza	Large necrotic lesions, irregular with reddish brown margins. Most common below lingual. Both seedlings and mature plants affected	Field sanitation and stubble management (i.e. burning or feeding of debris after harvest to livestock).
		 Ensure balanced nutrition. Avoid close planting to reduce humidity. Spray appropriate fungicides.
Sheath rot	Graying brown spots with grayish centers on uppermost leaf sheath that encloses youngest panicle. Common in irrigated sites	 Field sanitation and stubble management (i.e. burning or feeding of debris after harvest to livestock). Balance nutrition. Avoid close planting to reduce humidity. Use appropriate fungicides.
Rice blast, Pyricularia oryzae	The most widespread and destructive disease of rice. Can affect all aerial parts of rice. Spots appear on leaves and coalesce resulting in whitening.	 Time of planting influence blast development (do not plant too early nor too late). Avoid application of excessive amounts of nitrogenous fertilizers. Avoid close planting in the nurseries. Use resistant varieties. Burn stubbles after harvest (stubble management). Foliar spray of a recommended antibiotic or fungicides.

False green smut, Ustilaginoides virens	The head becomes filled with orange coloured masses of spores. Spores replace grains. Common in irrigated sites.	 Field sanitation and stubble management (i.e. burning or feeding of debris after harvest to livestock). Seed treatment or use hot water treatment if disease occurred already in earlier seasons.
White tip, Aphelenchoides besseyi Virus,	Minor disease. Tips of leaves become light yellow to white, then darker and die off. Plants are stunted. Panicles poorly formed and smaller. Nematode live on aerial parts of the plants invading the grain as it matures. The nematode becomes dormant under the husk. Minor disease. Chlorosis and stunting	 Avoid the use of infected seeds. Hot water treatment of seeds. Burn stubbles after harvest. Use resistant varieties.
Rice Yellow Mottle virus African rice gall midge, Orseolia oryzivora	leading to reduction in yield. Occasional pest. Borers into buds during seedling to panicle initiation causing swelling of infected parts. Tillers do no produce panicles. Serious attacks result in stunted growth and the production of more tillers which do not produce panicles.	 Plant resistant and early maturing varieties. Remove rotten crop before land preparation. Embark on early and synchronized planting. Seed dress with suitable pesticide.
Stalk-eyed shoot fly, Diapsis spp.	Occasional pests. Maggots feed on the stem tissues below the growing zone. Central whorl does not unfold and dries up, resulting in "dead hearts". Excessive tillering possibly apply a fast acting chemical soon as flying	 In general do not apply any insecticide in the valleys, where natural enemies can build up. Where good weed management is practiced, scatter or heap cleared weeds to provide cover for increased natural enemy activity. Use moderate amounts of fertilizer, split doses over the main growth stages to discourage rapid development ad multiplication of flies. Avoid panicle harvesting

		 (leaving tall stems and destroy stubbles to get rid of diapausing larvae. Water management: keep bases of stems always under water.
Leaf and stem suckers: Green leafhopper Nephotettix spp., White leaf hopper, Cofana spp., Spittle bugs, Locris spp.	Occasional pests. Both nymphs and adults suck plant sap. High populations cause wilting and drying resulting in "hopper burn".	 Practice good cultural and agronomic practices, i.e. early planting, using early maturing varieties. Keep farm weed free. Judicious use of fertilizers, especially nitrogen, keeps populations of plant suckers low.
Rice bugs, Stenocoris spp. Mirperus spp. Aspavia spp. Riptortus spp. Nezara spp.	Occasional pests. The bugs invade rice fields during flowering stage and lay eggs on leaves. Both adults and nymphs suck developing grains during milk and dough stages. Adults live long and are very mobile.	 Grassy weeds should be eliminated from the farm and surrounding areas and staggered planting should be avoided. Encourage predatory assassin bugs by creating refugia, i.e. good weed management with scattering or heaping cleared weeds to provide cover for increased natural enemy activity.
Rice beetle, Lagria villosa	Chew growing tips and flowers. Minor pest.	Chemical control not necessary.
Hispid beetles, Trichispa spp.	Occasional, but then destructive pest. Attack rice panicles and eat the grains. Suspected to be vector for Rice Yellow Mottle Virus (RYMV).	 Use close spacing. Keep bunds and surroundings free of grass weeds. Destroy stubbles and avoid rottoning. Top the tips of leaves of seedlings before transplanting to destroy egg masses. Ensure balance nutrition (avoid excessive nitrogen

	application)

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

	sect Pests and Diseases of Soybean	
Soybeans (Glycine max		
= soy)		
Plant protection problem	_	Control recommendation
Pest Name	Symptom or Damage	Cultural Practices and Direct Interventions
Seed decay, Damping off, Pythium sp. Corticium = Rhizoctonia solani	Occasional diseases. Poor germination. Poor stand. Sees rot in soil. Symptoms appear on hypocotyls as reddish collar region at which point seedling topples (<i>Corticium sp.</i>). <i>Pythium</i> infects the whole hypocotyls giving it a grey-green wet appearance leading to watery collapse.	 Use healthy seeds. Treat seeds with appropriate fungicides as seed treatment and PCNB drench in limited areas (spot treatment).
Sclerotium blight Sclerotium rolfsii	Occasional disease. Infection occurs at or just below the soil surface, causing light-brown lesions, which quickly darken and enlarge until the hypocotyls or stem is girdled. Plant then wilts. Mycelium forms around the stem bases, leaf debris and the soil around infected plants. Numerous tan to brown sclerotia form in the mycelium, on soil surface, in plan material.	 Alternate soybean with non host crop e.g. maize (rotation). Clean fallow for up to two years to reduce inoculums. Bury crop residue 15-25 cm deep to reduce inoculums and delay disease. Plant resistant or tolerant cultivars.
Wilts, Fusarium rot, light or Root rot Fusarium oxysporum f. sp tracheiphilum	Minor diseases. Characteristic are browning or blackening of vascular system in roots and stems. Seedlings emergence is slow and poor, affected seedlings are slanted and weak later sudden wilting/death occur. Older plants are stunted, leaves yellow and fall, the plant gradually dies. Pod infection may result in seed transmission of the pathogen.	 Pathogen is soil-borne and seed transmitted. Don't use seeds from infested crops. Grow cultivars resistant to <i>Fusarium</i> and soybean cyst nematode and root knot nematodes. Plant high quality seeds in warm well drained soils. Delay cultivation until soil moisture is low. In fields with a history of the disease, ridge soil around plant

		bases to promote development of adventitious rots from stem base. • Practice long term rotation with non-host crops (e.g. cereals, cassava).
Web blight Rhizoctonia solani	Occasional disease, potentially serious. Symptoms appear on leaves, stems, and pods. Infected leaves are water soaked, and then become greenish-brown. Old lesions fall off in dry weather, creating a ragged shot-hole effect. Total defoliation with severe infections.	 Use resistant varieties where available. Treat seeds with appropriate fungicide to limit early season disease development. Apply a foliar fungicide at first sight of the disease.
Leaf rust Uromyces sp.	Minor disease. Open pustules with rusty masses of spores on leaf blades.	 No direct control is required. Use resistant varieties, where available.
Anthracnose Colletotrichum truncatum C, glycines	Major disease. All stages can be affected. In early stages it appears on stems, pods and petioles as irregularly shaped brown areas. Later, infected tissues are covered with black fruiting bodies. Necrosis occurs on foliage and laminar veins after pro-longed periods of high humidity. Leaf rolling, petiole canker-ring and premature defoliation occur. Early pod infection results in pod blackening, no seed or fewer shriveled seeds. Mycelia mat fill pod cavity and seeds become mouldy.	 Sow seeds free of the pathogen. Treat infected seed with recommended fungicide. Plough crop residue under, burn or feed trash to livestock. Rotate soybean with non-host crops (e.g. cereals, rot and tubers, vegetables). Spray with appropriate fungicide when conditions favouring infection occurs between bloom and pod-fill (humidity). Use fungicides on foliage when disease symptoms appear.
Cotton Aphid Aphis gossypii	Major pest. Small, soft insects, found in clusters (colonies) around stems, young shoots and pods and underside of leaves.	Observe build-up of aphid populations and of natural enemies (predators like lady bird beetles, hover flies, lacewings, parasitic wasps like Aphidius spp.)

		Use recommended pesticides and/or Neem seed or leaf extracts.
Sucking bugs Anoplocnemis curvipes, Clavigralla tomentosicolis, C. shadabi, Riptortus dentipes, Mirperus jacundus, Aspavia sp. Nezara viridula	Major pests. Suck the contents of pods and soft growing parts. Inject poison into pods/seeds causing necrosis.	 Control weeds to destroy roosting sites. Limited control occurs in nature by <i>Trissolus basalis</i> a biological control agent as well as assassin bugs (<i>Reduviids</i>). Scout and at the rate of 2 bugs/meter row and spray with Organophosphate or other recommended pesticides.
Storage moths Ephestia cantella, Corcyra cephabonica	Larvae feed on grains causing extensive webbing of grains	 Solar disinfection, thorough drying of harvest produce. Do triple bagging using plastic sacks. Divide crop into a batch for short term storage (<3 months), and long term storage (>3 months). Treat only long term storage batch. Store small quantities with wood ash, ground nut oil, neem oil, black pepper powder etc. Apply neem oil (2-5ml/kg seeds). Apply appropriate storage pesticide for long term storage batch.

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

4.7.1.2.Pepper, okra and tomato

The tables below provide specific pests/diseases and Pest Management options including IPM strategies for pepper, okra and tomato.

Table 21: Management of Insect Pests and Diseases of Pepper

	Sement of insect Level and Diseases of Lepber	
Management	1. Cultural practices	
of pepper	Good farm sanitation practices such as deep ploughing, stubble burning, destruction	
pests	of crop residues and regular weed control can help reduce pest infestation	
	Infested plants should be uprooted and destroyed by burning.	
	2. Use of InsecticidesApplication of neem seed ectract and Bt can help reduce pest infestation to the	
	crop.	

SOURCE: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

Table 22: Management of Insect Pests and Diseases of Okra

Table 22. Manag	genicit of fisect rests and Diseases of Okra	
Management of okra pests	3. Use of Insecticides	
	•Foliar application of appropriate short-persistence insecticide or neem seed extract	
	or Bt can reduce damage by pests to plant foliage.	
	•Synthetic insecticides should only be used as a last resort.	

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

Table 23: Management of Insect Pests and Diseases of Tomato

Mana	gement
of	tomato
pests	

1. Host Plant Resistance

Planting resistant varieties of tomato can reduce the spread and incidence of TYLCV

2. Insecticides

- •Neem seed extract and Bt are effective against some of the pests of tomato. It is cheap and also less detrimental to the environment.
- •These bio-pesticides have shown good promise in the field as possible alternative control agents against major tomato pests since some of these pests have developed resistance to almost all the available insecticides.
- •The use of Bt and neem insecticides should be encouraged.
- •As much as possible avoid the use of high persistent insecticides to allow predators to effect natural control.
- •Use short-persistence organophosphorus or pyrethriod insecticides with low mammalian toxicity should be applied e.g. karate, deltamethrin, pawa.
- •Application of contact insecticides is not effective against leaf miners because the larvae are well protected in the mining cavities.
- •Use recommended dosage and observe pre-harvest intervals

Cultural Practices

- •Mined leaves may be picked and burnt.
- •Regular control of weeds which serve as alternative host plants between cropping season is useful in reducing pest infestation.
 - •Yellow sticky traps can reduce the numbers of adults of whiteflies.

- •Frequent weeding is crucial because it can deprive pests of their hiding places during the day so that they are exposed to the vagaries of weather.
- •Since the preferred hosts of some of the tomato pests are malvaceae plants such as cotton and jute, tomato should not be grown in close proximity to these crops.
- •Good farm sanitation practices such as ploughing, stubble burning, destruction of crop residues and regular weed control can help reduce population of major pests of tomato.
- •To avoid damage by the fruit piercing moths, prompt harvest of fruits as soon as they mature is recommended.
- •Sting bugs are difficult to control with chemicals because both the nymphs and adults drop quickly to the ground when disturbed.
- •Insecticides are not effective against the fruit piercing moths because they are nocturnal and their breeding sites are difficult to locate. They also have wide host range.

3. Biological Control

•Natural control of sting bugs is caused by parasitic wasps and flies which can cause up to 90% parasitism of the eggs and adults, respectively.

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

4.7.1.3.Root and Tuber crops-Cassava, Yam and Sweet potato

The tables below provide specific pests/diseases and Pest Management options including IPM strategies for cassava, yam and sweet potato.

Table 24: Management of Insect Pests and Diseases of Cassava

Mana	gement
of	cassava
pests	

•An IPM with biological control as its backbone was developed in 1984 and a parasitoid wasp, *Epidinocarsislopezi* (De Santis) (Hymenoptera: Encyrtidae) and predatory insects, *Diomus* spp. and two *Hyperdspis* spp. (Coleoptera: Coccinellidae) were released in Ghana. Later, a predatory lace-wing insect *Sympherobius* spp. (Neuroptera: Hemerobiidae) was released against the mealybug and predatory mites and *N. Anonymus* Chant and Baker (Acari: Phytoseiidae) against the green spider mite by IITA in conjunction with the PPRSD of the MoFA.

Planting of cassava on uninfected land.

- Planting of disease free cuttings.
- Healthy stock should not be planted side by side with diseased plants.

SOURCE: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

Table 25: Management of Insect Pests and Diseases of Yam

Management	Cultural
of yam pests	• Late-planting has been found to reduce yam beetle infestation. Yams planted
	early suffer more damage than later planted yams since the beetles are more
	attracted to plants with more advanced growth and do not usually attack plants

with vines less than 1.3 m.

- Site selection is also important. Yam farms should be located further from possible breeding sites of yam beetles.
- Trapping of beetles can help reduce their population. Light traps hung on a tripod and a container with water placed just below them can be used to trap the migrating beetles.
- Dipping of yam setts in hot water before planting can kill immature stages of beetles on tubers.
- Planting clean and healthy yam setts
- Removal of mealybug or other pest infested tubers before storage
- Pest infested tubers should not be stored or used as planting material
 - Brush yam tubers to remove scale insects before storage.

Nematodes are best controlled by

- Avoiding planting of infected setts,
- Ensuring sufficiently long fallow periods between yam croppings,
- Dipping yam setts in hot water,
- The use of non-host "bait crops" during the fallow period or as an intercrop with the yams can help reduce soil populations of the nematodes.

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

Table 26: Management of Insect Pests and Diseases of Sweet potato

 Early planting and harvesting to escape pest attack Use of insect-free planting materials (vines, tubers). Frequent re-ridging or earthen up to close soil cracks to prevent beetles depos eggs in the tubers or at the base of stems. Proper disposal of infested vines and tubers. Clones with deep tuberization should be preferred if available. Crop rotation with non-host crops Resistant varieties are being developed against the weevils. Neem seed extract is effective against pests of sweet potato. 	Management of sweet	Cultural Practice
 Frequent re-ridging or earthen up to close soil cracks to prevent beetles depose eggs in the tubers or at the base of stems. Proper disposal of infested vines and tubers. Clones with deep tuberization should be preferred if available. Crop rotation with non-host crops Resistant varieties are being developed against the weevils. 	potato pests	Early planting and harvesting to escape pest attack
eggs in the tubers or at the base of stems. Proper disposal of infested vines and tubers. Clones with deep tuberization should be preferred if available. Crop rotation with non-host crops Resistant varieties are being developed against the weevils.		Use of insect-free planting materials (vines, tubers).
 Clones with deep tuberization should be preferred if available. Crop rotation with non-host crops Resistant varieties are being developed against the weevils. 		• Frequent re-ridging or earthen up to close soil cracks to prevent beetles depositing eggs in the tubers or at the base of stems.
 Crop rotation with non-host crops Resistant varieties are being developed against the weevils. 		Proper disposal of infested vines and tubers.
Resistant varieties are being developed against the weevils.		Clones with deep tuberization should be preferred if available.
		Crop rotation with non-host crops
 Neem seed extract is effective against pests of sweet potato. 		Resistant varieties are being developed against the weevils.
		Neem seed extract is effective against pests of sweet potato.
Application of microbial agents such as <i>Beauveria</i> spp for biological control weevils.		• Application of microbial agents such as <i>Beauveria</i> spp for biological control of weevils.

Source: Handbook of Crop Protection Recommendations in Ghana: An IPM Approach vol 1. Cereals and Pulses (2002)

5. ANALYSIS OF POTENTIAL ENVIRONMENTAL AND SOCIAL RISKS AND MITIGATION MEASURES OF THE USE OF PHYTOPHARMACEUTICAL PRODUCTS

Pesticides are often applied without Personal Protective Equipment (PPE) resulting in significant health risks. The country is full of resellers and window dressers whose management is a problem for the regulatory and supervisory services. Indeed, many of them do not meet the profiles required by the profession. Concerning empty pesticide packaging, they are used to store, store and transport drinks (including water, milk, etc.) as well as foods such as oil and salt.

5.1. Critical steps in pesticides management

Uncontrolled use of pesticides has negative impacts on the body when absorbed. The impacts of toxic products on the body are related to their concentration in the target organs. The foreseeable risks are related to the following steps:

- the storage of products;
- handling and transport;
- the dosage during the treatments (contamination of the applicators) that could be exposed to the effects of the pesticides when the standards of use are not respected if the instructions relating to the standards of use of the products are not sufficiently applied;
- the consumption of the products harvested immediately after their treatment if the populations are not sufficiently informed and associated with the preventive control.

The table below summarizes the environmental and social risks of pesticide management.

Table 27: Summary of the environmental and social risks of pesticide management methods

Step	Determinants	Risks		
		Public Health	Environement	Staff
Transport	Lack of training	discoverment of pesticides in inhabited places	Accidental spill, ground water pollution by leaching	-Inhalation of product: steam, dust, -risk of skin contact
Storage	- Lack of means to realize the wharehouse -training deficit on pesticide management	Accidental contamination -Gene, nuisance of the nearby populations	Soil contamination	Contact with the skin by reversal caused by the exiguity of the places
Handling / manipulation	Training and awareness deficit	Contamination of water sources by washing containers	Soil contamination by accidental or intentional spill, groundwater pollution	Inhalation of steam, dermal contact by splashing during preparation or transfer of porridge
Elimination of Packaging/containers	Training and awareness deficit	Ingestion of products through the reuse of containers	Dermal contact	Dermal contact
Washing containers	Training and awareness deficit	Dermal contact, wells contamination	-Intoxication of fish and other crustaceans, -pollution of wells and ponds, groundwater, -Selection of resistance at the larval stage	Dermal contact

Large quantities of unregistered or obsolete pesticides pose major risks to the health of humans, animals and the environment of the program area. The conditions of transport and storage of this toxic waste are often very precarious. This is a source of diseases of all kinds (cancer, rashes, and others) for humans. Moreover, with regard to the use of pesticides, its health consequences are often cases of death or intoxication. Indeed, over the years, there have been several cases of intoxication, including fatal for humans, livestock or the fish population that are not declared for lack of a good monitoring and evaluation and documentation.

5.2. Populations at risk

Many people are exposed to the risks of pesticide management. This situation concerns both carriers and unauthorized resellers as well as manipulators (applicators) of these products. However, it should be noted that those involved in treatment operations are considered to be the most exposed link, although it is important to note that all other segments of the population may be at risk. Risks occur during:

- the application of pesticides for foot applicators and manipulators of the apparatus;
- transport: contamination of containers, containers, bursting or spilling of drums;
- monitoring during treatment or prospecting operations.

5.3. Negative impacts on the environment

The use of pesticides has a number of disadvantages and side effects, including environmental pollution and the risk of intoxication that justify the need to abandon the method and the use of other methods natural protection methods. Negative impacts on fauna, flora, soil, air and water are:

- risk of mortality on non-target species that fulfill important ecological functions: bees and other pollinators, natural enemies of certain pests (parasites, predators, pathogens);
- pollution during space treatments of parks and nature reserves, fishing and farming areas with contamination of fauna and flora;
- water pollution either directly or through runoff;
- appearance of resistance in insect populations.

Table 28: Negative impacts of uncontrolled use of pesticides on the environment

Receiving environment	Nature of the impact
Soil	Falling fertility
	Acidification
	Alkalinization
	Salinization
Surface water (plans,	 Loss of quality (contamination)
inland wetland)	PH change
Well water or drilling	 Contamination
Groundwater	PH change
Biodiversity	Chemoresistance of pests
	 Intoxication of wildlife
	Poisoning and mortality
	 Reduction of number and / or biomasses
	 Disappearance of species or groups of species
	Breaking off of ecological balance
	Biodiversity erosion
	 Loss of natural habitats or useful species
Air	Air contamination,
	Olfactory nuisances

5.4. Negative health impacts

Plant protection products intended to prevent and control pests and diseases in agricultural production have started to be harmful to humans and their environment. Thus, it should be noted that some plant protection product storage depots are:

- installed in inappropriate geographical areas (in the middle of agglomerations);
- constructed without respect of conventional standards (without holding tank, without sump and without a firebreak);
- poorly ventilated and poorly lit.

In addition, the personal protection measures and the recommended doses are not respected. Plant protection products cause burns, human poisoning (nausea, vomiting, dizziness, coma, death) and animal poisoning in rural areas, especially in the vegetable growing areas, pollute water and air, destroy wildlife and dangerously modify the functioning of the ecosystem.

Table 29: Negative impacts of uncontrolled use of pesticides on health

Receiving environment	Nature of the impact
	 Acute poisoning headache, dizziness, nausea, chest pain, vomiting, rashes, muscle aches, excessive sweating, cramps, diarrhea and breathing difficulties, staining and falling nails, poisoning, death
Human health	 Chronic poisoning: Lowering of cholinesterase levels, Effects on the nervous system (neurotoxins), Effects on the liver, Effects on the stomach, Decrease of the immune system, Disruption of hormonal balance (brain, thyroid, parathyroid, kidney, adrenal, testes and ovaries), Risk of abortion (embryotoxins), Mortality at birth (fetotoxins), Sterility in humans (spermatotoxins)

5.5. Assessment of knowledge and practices in pesticide management - public consultations

In discussions with the MoFA Technical Services, the Department of Crop Services (DCS), the Department of Agricultural Extension Services (DAES), Veterinary Services Directorate of MoFA and the EPA of the Minsistry of Environment, Science, Technology and Innovation, in this case the Chemical Protection and Management Center (CCMC) of the EPA, it was observed that knowledge about IPM and good phytosanitary practices are relatively well mastered. But it remains that at the level of users (agro dealers, vegetable-gardeners, cereal, and legume androottuber farmers), there is stillthe urgent need in terms of information, training and awareness on regulatory procedures, product characteristics and good practices.

Most of the users or sellers as well as the populations, ignore the adequate and relevant use of pesticides and the different alternative methods. We also note that safety measures are generally precarious and it is important and necessary to control the places of storage and sale of pesticides in order to avoid or at least reduce the exposure of the population to these products. Risks remain greater

in the country where information and awareness are insufficient on the necessary safety arrangements for handling pesticides. In the framework of the program, it is necessary to provide information - education - communication (IEC) actions through local radios and posters. The photos below illustrate some images of the actors met during public consultations in the program area.

Photo 4 : Public Consultation with Ministry of Food and Agriculture Officers in Pokuase

Photo 5: Individual consultation with a famer in Kpone Katamansu

Source: B. Mobongol/June 2018

The interviews (interviewees) revealed the following:

• The farmers:

- The packaging is either buried or thrown in the fields or is incinerated;
- Pesticide products are stored at home;
- The non-use of personal protective equipment (PPE);
- The need for agricultural advice provided by the extension services of MoFA.

• The distributors:

- Competition with sellers of expired or near-expired products at low prices;
- The presence of unauthorized dealer shops.

• MoFA and EPA agents:

- Lack of storage facilities for prohibited products seized:
- Lack of adequate storage facilities for the seeds produced;
- Poor packaging management (abandonment, burning, reuse as container);
- No protective measures during the preparation and application of pesticides;
- Challenge of compliance with phytosanitary regulations;
- Insufficient human resources, equipment (high-performance laboratories), logistical and financial resources for monitoring in the field;
- Need for capacity building.

Analysis of the results of the stakeholder and beneficiary consultation on pesticide management led to the following recommendations:

- develop organic farming to minimize environmental degradation and reduce the increased use of plant protection products;
- Strengthen agricultural advice around the popularization of integrated pest management (IPM) methods among farmers;
- Organize mass sensitization on the responsible use of pesticides given the level of knowledge of the populations, especially the farmers in this field;
- Strengthen the capacity of health workers in the management of pesticide poisoning cases and the establishment of databases on the various cases treated;

- Strengthen the technical platform of health centers for better management of cases of intoxication;
- Establish storage facilities for unregistered pesticide and empty packaging products and regulate the removal of such packaging by distributors;

5.6. Synthesis of minimization of the negative impacts of Pesticides

The use of pesticides by users could lead to environmental and social impacts or risks. Pesticides can cause the decline of soil fertility, cause its acidification and strengthen its content of heavy metals with various consequences, especially for the food chain. Their intrusion or discharge into groundwater or surface water contributes to the increase of heavy metals, nitrates that may cause eutrophication phenomena and / or inconvenience or even destroy the fauna and flora.

Pesticides could also contribute significantly to the decline of the wildlife population, especially birds whose eggs do not reach hatching because of weak shell texture. In humans and livestock, the impacts can be mortality shock effects or be more insidious with the long-term accumulation that can cause, including mutagenic effects, loss of fertility, bronchopulmonary problems, etc. The following table outlines some measures that can mitigate these negative impacts of pesticides.

Table 30: Measures to Mitigate the Negative Impact of Pesticides

Environment	Nature of impact	Mitigation measures		
	Falling fertility	 Popularize the use of manure or compost; Use mineral fertilizer rationally; Apply appropriate farming techniques and recommended by the departments of the Ministry of Food and Agriculture; Fight against deforestation and erosion. 		
Soil	Acidification	 Minimize and respect the dosages of nitrogen fertilizer use Apply appropriate cultivation techniques 		
	Pollution by phosphates, heavy metals (Pb++, ZN ++, Mn ++)	 Strengthen the pesticide control system; Provide obsolete and outdated pesticide disposal devices; Use pesticides efficiently; Popularize and encourage integrated pest management (IPM); Establish empty container storage facilities and regulate their removal by manufacturers. 		
Surface and underground water	Pollution by nitrates, heavy metals	 Minimize the use of nitrogen fertilizers; Establish empty container storage facilities and require their removal by the manufacturers. 		
Flora	Deforestation	Fight against deforestation and erosion.		
Biodiversity	Chimoresistance of pest	 Practice the Agroecosystem Analysis (AESA) before making decisions on the choice of pest management method; Identify pests and pesticides that are specific to them; Rational application of pesticides; Diversification of pesticides used. 		
	Intoxication of aquatic and terrestrial fauna	 Educate users about the risks of intoxication; Sensitize livestock farmers on watering at safe water points. 		
	Terrestrial biodiversity loss	• Apply integrated pest management methods (biological control, genetics, use of attractants, repellents,		

Environment	Nature of impact	Mitigation measures
		hormones, etc.).
Health	Intoxication Poisoning, Death, Cholinesterase	 Respect the storage and storage conditions of pesticides; To sensitize the populations on the risks of food poisoning: Strictly apply rational measures of use; Use personal protective equipment.

6. ACTIONS PLAN FOR PEST AND PESTICIDE MANAGEMENT

The pest and pesticide management action plan as part of the implementation of WAATP will make it possible to regulate the use of pesticides more effectively and specially to recommend a set of measures to limit the negative impacts. Its main purpose is to protect the biophysical and human environment through the promotion of the use of integrated pest management methods, capacity building of farmers, destruction of obsolete stocks, and environmental impact assessment of Agricultural development projects likely to use a considerable quantity of pesticides, the management of empty containers and the provision to farmers of protection and spraying equipment.

6.1. Priority issues identified in the program area

The following issues and constraints have been identified and prioritized as a result of stakeholder consultations to improve pest and pesticide management:

6.1.1. On the plan of Institutional, legislative and regulatory

- Non-compliance with the regulations;
- Insufficient regulation;
- Porosity of national borders;
- Lack of quarantine infrastructure (station);
- Lack of awareness / absence of confirmation of farm animal diseases by the Veterinary Services Directorate;
- Absence of database on diseases in animal production;
- Insufficient human resources, equipment (efficient laboratories) logistical and financial resources for the field monitoring of IPM approaches.
- Need for capacity building.

6.1.2. On the plan of capacities of the actors and the awareness of the populations

- Insufficient farmers training on pesticide use and management of empty packaging;
- Insufficient information of the populations on the dangers related to the use of pesticides;
- Illiteracy of the populations.

6.1.3. On the plan of technical management of pests

- Insufficient extension of alternative methods to pesticides and integrated pest management;
- Lack of efficient treatment and waste disposal systems:
- Unavailability of approved pesticides near farmers.

6.1.4. At the level of control and monitoring

- Insufficient control over the use of products (personnel and equipment);
- Insufficient control and monitoring of negative impacts related to pesticides (pollution, intoxication, etc.).

6.2. Plan for Integrated Pest Management

For the most part, the action plan is structured around the axes as indicated by the following logical framework:

Table 31: Logical framework of the pest management action plan

Objectives	Activities to be implemented in response to identified problems	Indicators	Sources of vérification
1 : Strengthen the institutional framework for	Strengthen the capacity of action (financial and material resources) of the directorates of the Ministry of Food and Agriculture and its representations in the regions and Environmental Protection Agency (EPA)	Number (Nb) of vehicles purchased or repaired available to divisions and operational units	Minutes of de reception
pest and pesticide management	Organize a regional and national workshop to share the Pest Management Action Plan Ensure effective enforcement of pesticide management regulatory	Number of workshops organized Number of participants Number of awareness sessions	workshop organization report Awareness campain report
	Promote an incentive policy to recover pesticide packaging and require production / distribution companies to recover packaging	Number of empty packages recovered	Activity Report
technical and organizational measures for the management of pests and pesticides	Support research institutions and universities to develop technologies and alternatives to pesticides, seeds and planting material resistant to diseases and pests Types and number of pesticides, seeds and planting material resistant to diseases and pests		Activity Report
	Popularize techniques of alternatives to pesticides and methods of integrated pest management	Number of extension sessions	Minutes
	Disclose periodically / regularly the list of registered pesticides Make available to farmers the results / technologies resulting from research (local radio, TV, brochure, etc.)	Number of publications Number of diffusions carried out Number of brochures	Disclosure Project activity report
	Proceed with collection, storage and final disposal of obsolete and outdated chemicals products	Number of pesticides seized	Minutes of confiscation
	Proceed to recycle some empty packaging	Quantity of empty recycled packaging	Minutes of the operation
	Prepare Information-Education-Communication (IEC) booklets so that populations (farmers) are informed and sensitized on IPM approaches and the responsible use of pesticides.	Number of training booklets produced	Activity Report
	Accompany and subsidize farmers in the acquisition of personal protective equipment	Number of farmers with Personal Protective Equipment (PPE)	Subvention report
	Promote the setting up of communautaries committees; train them to provide a relay for raising awareness about good agri-environmental practices (IPM,	Number of IEC missions completed	Information- Education and

Objectives	Activities to be implemented in response to identified problems	Indicators	Sources of vérification
	alternatives, and management of empty packaging), equip them with the means to carry out their sensitization mission on pests and pesticides.		Communication report
	Develop database with appropriate formats in collaboration with the PPRSD divisions, VSD (MoFA) and EPA division to monitor negative impacts of pesticides on the environment of program sites and livestock disease cases	Database	Database Implementation Report
3 : Capacity building of actors involved	Conduct IEC to farmers and populations on IPM approaches and the judicious use and management of pesticides, hazards and good hygiene practices in the use of agricultural inputs	Number of IEC Number of participants	Activity Report
in integrated pest	Strengthen the exchange of information on pesticide management with other stakeholders involved in pesticides.	Number of meetings made	Minutes of meeting
management	Train regional health officers on the management of poisoning cases due to pesticides (toxicology) and set up a database to monitor cases of intoxication.	Number of health workers trained Existing database	Trainning report Database Implementation Report
	Actively involve civil society, including NGOs and outreach committee in information / education / communication in popularizing approaches to integrated pest management	Number of civil society involved in IEC on pesticide management	Project activity report
4 : Provide control,	Perform periodic checks and analyzes	Number of checks and analyzes carried out	Project activity report
monitoring and evaluation of	Provide supervision and final evaluation of the PMP	Number of monitoring and evaluation missions	Project activity report
pest and pesticide management	Provide post-clearance import control before customs clearance	Number of checks	Report of Coustoms

6.3. Participatory Monitoring and Evaluation Plan

The monitoring will verify, in the field, the accuracy of the assessment of certain impacts and the effectiveness of certain mitigation measures provided for in the PMP, and for which there is still uncertainty in the analysis of data to verify whether the implementation of the activities is proceeding as planned and to make immediate adjustments, if necessary. It is therefore a short-term evaluation activity to enable real-time action. The frequency of monitoring will depend on the type of information needed, however it will be ongoing throughout the implementation of the action plan.

Overall monitoring will be provided by the project's environmental unit. It will be organized through periodic visits to the field. A comprehensive monitoring plan will be developed and made available to other actors involved in the implementation and who are challenged; each as far as it is concerned, in monitoring.

6.3.1. Activities to monitor

To measure the effectiveness of the Pest Management Plan (PMP) on the level of reduction of the diseases and intoxications of the people concerned, particularly the safety in the treatment environment (in the field), the recommended actions should be the subject of monitoring / evaluation. Thus, all activities concerning the purchase and use of pesticides requiring quantitative or qualitative information on the environmental and social impacts and benefits of WAATP should also be monitored by the Environmental Unit.

6.3.2. Reference situation

The reference situation on the management of pesticides and zoo-sanitary products will have to be established as part of the overall study of the reference situation of the Program (WAATP). This situation should establish the basic level of indicators to be observed throughout the Project with regard to the progress made in the management of pesticides and other zoo-sanitary products, for a better and lasting protection of the different components of the biophysical environment and human (human beings, fauna, flora, ecosystems).

6.3.3. Monitoring indicators

Indicators to be followed during the implementation of the project by the actors involved including Regional Environmental and Social Respondents (RESR), researchers, agricultural extensionists, plant protection services, environmental services and health services are the following:

6.3.3.1.Strategic indicators to be monitored by the Environmental and Social Unit (ESC) of the program

The strategic indicators to be followed by the ESC are:

- designation of Regional Environmental and Social Respondents at the level of the structures involved in the implementation of the project;
- regional workshops and a national workshop organized to share and disseminate the PMP before or just at the beginning of project implementation;
- number of actors trained / sensitized on good management practices for pesticides and their packaging;
- number of people subject to intoxication;
- number of complaints received.

6.3.3.2.Indicators to be followed by the RESR of the project implementation structures

The indicators below are proposed to be followed by the RESR of the project implementation structures:

Table 32: Indicators to be followed by RESR

D ' 1' I I' 1							
Designation	ndicators						
Health and	 Degree of toxicity of the pesticide products used; 						
Environment	- Level of knowledge of good management practices (pesticid	les,					
	empty packaging, etc.);						
	- Level of impact on domestic animals, aquatic organisms and						
	fauna;						
	- Level of contamination of water resources.	Level of contamination of water resources.					
Conditions of							
storage	 Level of risks associated with transportation and storage; 	Level of risks associated with transportation and storage;					
management of	 Level of control of spraying and impregnation processes; 	Level of control of spraying and impregnation processes;					
pesticides and	- Number of disposal equipment, functional packaging, quantity						
empty packagin	of packaging eliminated						
Training of staff	- Number of training sessions carried out;						
Information	- Number of agents trained by category;						
/awareness of	- Number of farmers adopting integrated pest management, go	ood					
farmers	pesticide management practices;						
	- % of the population affected by the awareness campaigns;						
	- Level of users' knowledge of phytosanitary produ	icts					
	(pesticides) and associated risks;						
	- Level of knowledge of traders / distributors on the						
	phytosanitary products (pesticides) sold.						
Productivity	- Impact of the adoption of IPM on production performance	of					
	farmers						

6.3.3.3.Indicators to be followed by other state institutions

During the implementation phase of the activities of the PMP, the monitoring will focus on the main environmental components (water, soil, vegetation and fauna, living environment, health, etc.) and will be provided by the State structures in charge of the project management of these components: the Environmental Protection Agency; the services of the MoFA; Laboratories or National Center of Public Health, Health Districts, etc.).

6.3.4. Responsibilities for monitoring of the PMP

The WAATP's Program Coordinating Unit (PCU) will be responsible for implementing of the PMP. The overall coordination of the monitoring of the PMP will be under the supervision of the Environmental and Social Safeguard Specialist (ESSS) of the PCU, in collaboration with the relevant national institutions as follow:

- The Plant Protection Services (PPRSD) of MoFA will be responsible for the internal environmental monitoring of the PMP in the intervention sites of the program through the regional PPRSD divisions;
- The EPA / CCMC will be responsible for the external environmental monitoring of the PMP in the intervention sites of the program, with NGOs participation;

- Health monitoring will be provided by the regional health districts.

6.3.5. Evaluation of the plan

Two evaluations will be carried out during the implementation of the PMP. This is an internal mid-term evaluation and external evaluation during the month following the end of implementation in order to maintain the objectives of the action plan. The mid-term evaluation will be carried out by a Consultant (international or local). The purpose will be to determine the correct evolution of the management plan, the mid-term results. The financial partners, the project beneficiaries and the other partners involved will participate fully in this evaluation. The external evaluation will measure the effectiveness of the project and its performance and identify lessons learned. This evaluation will be integrated into the evaluation of the WAATP action.

6.3.6. Summary of the monitoring plan

The plan below summarizes the monitoring elements, monitoring indicators, periodicity and monitoring responsibilities.

Table 33: Summary of the Monitoring Plan

Component	Elements of	Indicators and	Periodicity	Responsible of monitoring
Component	monitoring	elements to collect	remodicity	Responsible of monitoring
Water	State of pollution / Contamination of surface water and underground resources (wells)	Physicochemical and bacteriological parameters of bodies of water (rate of presence of organochlorines, pesticide residues, etc.)	Twice a year (Start and end of campaigns)	 WAATP's PCU PPRSD/MoFA EPA/MESTI Specialized laboratories
Soils	State of pollution of the sites Pesticide storage	Typology and quantity of discharges (solid and liquid)	Once a year	 WAATP's PCU PPRSD EPA /MESTI Specialized laboratories
Vegetation and fauna	Evolution of fauna and microfauna; the state of the flora of animal and plant biodiversity	Presence of toxic residues in plants and crops Levels of destruction of non-targets (animals, aquatic fauna and vegetation)	Once a year	 WAATP's PCU PPRSD/MoFA VSD (MoFA) EPA Ministry in charge of Waters and Forests Municipality
Human Environment	Hygiene and health Pollution and nuisances Protection and Security during operations	Types and quality of pesticides used Number of accidents / intoxication Waste management (pesticide residues and empty packaging)	Once a year	 WAATP's PCU PPRSD EPA Services or health laboratory

Component	Elements of monitoring	Indicators and elements to collect	Periodicity	Responsible of monitoring
		Respect for the wearing of protective equipment		
		Compliance with pesticide storage and use measures		
		Number of farmers sensitized on the use of pesticides		
		Level of monitoring by plant protection officers		

6.4. Training of actors involved in the pest integrated management

In order to ensure the effective integration of WAATP's environmental concerns, a capacity building program (training and awareness raising) will be implemented for all stakeholders, which will have to focus on the following areas: make operational the strategy of Integrated Pest Management; foster the emergence of expertise and professionals in pesticide management; raise the level of employee responsibility in pesticide management; protect the health and safety of people, plant protectionist and veterinary laboratories personnel. The training should be targeted and adapted to the following target groups: Agents of the Regional Agriculture Departement (DADs) and MESTI, in particular, EPA; health staff, farmers' organizations and other NGOs active in phytosanitary and anti-vector control.

As a general rule, the best trainers are found in the staff of the Ministries of Health, Environment and Agriculture. The training will mainly concern the pesticide management staff (extension agents), to enable them to acquire the necessary knowledge on the content and methods of prevention, to be able to evaluate their work environment in order to improve it by reducing the risk factors. It will also enable them, adopt precautionary measures likely to reduce the risk of intoxication, promote the use of protective equipment and to correctly apply the procedures to be followed in the event of accidents or intoxication. The training must also concern the beneficiaries of the program and other local people active in phytosanitary and anti-vector control.

The training modules will cover: (i) Integrated Pest Management (IPM) methods and approaches; (ii) risks related to the handling of pesticides, ecological methods of management (collection, disposal, storage, transportation, treatment); (iii) the appropriate behavior and good agro-environmental practices, (iv) the maintenance of treatment facilities and equipment, protective measures and measures to be taken in case of intoxication, etc. Particular emphasis will be placed on the requirements of secure storage, to avoid mixing with other common household products, but also on the reuse of empty packaging. An indication of the contents of the training modules is described below:

- Methods, routes and technical approaches to integrated pest management;
- Alternative methods and approaches to chemical control;
- Sufficient knowledge of the pests and diseases of the target crops;
- Knowledge of methods of agro-ecosystem analysis;
- Risk information as well as health and safety advice;
- Methods and approaches for integrated pest and disease management of crops and livestock;
- Knowledge of the Harmonized System for the Labeling of Chemicals (Pesticides);

- Basic knowledge of handling and risk management procedures;
- Port of protection and safety equipment;
- Risks related to production, use, storage, transportation, distribution / marketing, handling use, disposal of pesticides;
- Outline of the process of treatment and operation;
- Health and safety related to the operations (transport, storage, treatment ...);
- Emergency and rescue procedures;
- Technical procedures;
- Maintenance of agricultural equipment;
- Process and residue monitoring;
- Biological monitoring of pesticide exposure;
- Knowledge of the risks and dangers of pesticides for humans and the environment;
- Measures and good practices to be followed during the transport, storage, distribution and use of pesticides;
- Secure management of empty packaging / containers and pesticide stocks;
- Information and knowledge on national phytosanitary regulations.

6.5. Awareness campaigns on pesticide management

In the field of agriculture, the most imminent dangers come from the unregulated use of pesticides usually used for plant protection. However, these products are inappropriately used in the production of cereals and for market gardening, hence the need for awareness oncorrect use of pesticides and chemical fertilizers. Also, the awareness campaign should first address the users of chemicals, including beneficiaries and traders on the risks of using certain chemicals hazardous to human health. This awareness should aim at seeking and popularizing modern methods of protection and conservation and even traditional methods of highly efficient granaries as well as biological and natural methods of controlling pests.

For the public, media broadcasts should be regularly organized. The risk of poisoning by chemicals is a serious public health problem. On the one hand, it is necessary to distinguish between: (i) health problems resulting from eating, that is to say, from the consumption of food products (especially vegetables or cereals) contaminated by dangerous chemicals; (ii) health problems due to the consumption of damaged products (due to expiry date) that have been chemically decomposed or contain chemical sweeteners; (iii) health problems due to the use of outdated plant protection products whose chemical components are corrupted or disintegrated due to non-compliance with the rules of conservation, storage or normal duration; (iv) health problems due to overdose.

In total, according to farmers, information and awareness on environmental and health risks are very poorly organized due to insufficient human and financial resources. One-off actions by public services and the desire to regulate through legal texts remain marginal. It is necessary to develop long-term strategies and effective approaches to inform and sensitize all stakeholders (window vendors, wholesalers, agricultural users, rural populations, etc.), by moving towards the following areas of intervention:

- develop and distribute video documents and posters / leaflets / posters on the various risks and good practices in the use of pesticides;
- sensitize actors through radio and television debate programs;
- provide support to actors operating in the various sectors concerned to raise the awareness of their members of the occupational risks related to chemicals (pesticides) in their respective fields;
- support consumer associations to raise awareness among the general public;
- strengthen the training of rural supervisors and extend their action through rural radios.

Information and awareness programs, especially for the general public and decision-makers in particular, are essential to reduce the risk of disease and poisoning by pesticides, and ultimately, to induce a real

change in behavior. These programs will have to be multifaceted and rely on several supports. Public media can play a relatively important role in raising awareness among the public and users. NGOs and associations / groups of agricultural producers, but also community structures and health services, should also be involved in raising awareness.

6.6. Coordination and monitoring of integrated pest management

The implementation of the pest and pesticide management strategy is a concern for many stakeholders and requires the participation of a wide range of national organizations. Development activities, such as agricultural projects, can lead to the creation of suitable habitats (habitats) for vectors and ultimately to the increased incidence of vector-borne diseases. In addition, the safe and appropriate use of insecticides, including quality control and resistance management, requires intersectoral collaboration. Several actors are involved individually or in partnership in the implementation of planned actions. The management of pests and pesticides requires a frank and close collaboration between the Project, the health services, the population, the MoFA and EPA, the local communities, the private sector involved in the import and distribution of pesticides and producer organizations. It will be necessary to establish communication and close collaboration among the various actors to ensure the necessary support for the proper implementation of policies and strategies.

6.7. Reporting and review arrangement

Annual report on the progress of pest and pesticide management at the project sites will be prepared by the Program Coordinating Unit of WAATP. The reports will indicate the pest cases identified and treated using IPM approaches, location of pests, level of success of treatment, the amount and type of herbicide/pesticide used, level of corporation from farmers and other relevant information (e.g. training programmes organized, farmer field schools held, etc.).

Concerning the management reviews, the PCU will undertake annual pest and pesticide control and management reviews to confirm the implementation of the various control measures or programmes or actions outlined in the PMP. Recommendations from the reviews will help the PCU to refocus and plan effectively towards achieving planned targets.

6.8. Institutional arrangements for the implementation and monitoring of the PMP

The implementation of the PMP requires an institutional arrangement as follows:

- The PMP will be implemented under the coordination of the WAATP environmental unit;
- **The PPRSD**: it will ensure the internal monitoring of the implementation of the environment and health component of the PMP and will regularly report to the Program Coordination Unit. It will intervene in the training of the regional agents of the Ministry in charge of Agriculture;
- **The EPA**: It is responsible for the external monitoring of the "environment" component of the implementation of the PMP;
- **Health Services**: They will provide external monitoring of the implementation of the health component of the PMP and will regularly report to the Program Coordination Unit;
- The Research and Analysis Laboratories: They will assist in the analysis of environmental components (analyzes of pesticide residues in water, soil, plants, agricultural harvest, fish, food, etc.) for determine the various parameters of pollution, contamination and toxicity related to pesticides;
- **Farmers' Organizations**: They must have and apply the procedures and good environmental practices concerning the use and the ecological and safe management of pesticides;
- **Local communities (town halls):** they will participate in the sensitization of populations, social mobilization activities. They will also participate in the supervision and external monitoring of the implementation of the measures recommended under the PMP;

- **NGOs and civil society**: NGOs and other environmental organizations of civil society can also participate in informing, educating and raising awareness among agricultural producers and the population on the environmental and social aspects related to the implementation of the PMP, but also to monitoring of the implementation and monitoring of the environment.

6.9. Budget of PMP

The budget for implementing the PMP Action Plan is estimated at US \$ 507,000 as shown in the table below.

Table 34: Cost of activities for the implementation of the PMP for the WAATP in Ghana

Activity	Units	Qties	Unit Cost (US \$)	Total cost (US \$)	Calendar
Objective 1 : Strengthen the ins	titutional fra	mework	for pest and	pesticide man	agement
Strengthen the capacity of action (financial and material resources) of the directorates of the MoFA and its representations in the regions and EPA	Number	5	15, 000	75, 000	Year1
Regional and National PMP sharing workshop	Number	5	5, 000	25, 000	Year1
Ensure effective enforcement of pesticide management regulatory	Region	5	2, 000	10,000	Year2
Promote an incentive policy to recover pesticide packaging and require production companies to recover packagin	Subvention/ Region	5	3, 000	15, 000	Year2
Objectif 2 : Strengthen technical		ational n	neasures for tl	ie managemei	it of pests
Support research institutions and universities to develop technologies and alternatives to pesticides, seeds and planting material resistant to diseases and pests	Fate rate	1	60, 000	60, 000	Year1 to Year3
Popularize techniques of alternatives to pesticides and methods of integrated pest management	Fate rate	1	10,000	10,000	Year2, Year3 & Year4
Disclose periodically / regularly the list of registered pesticides	An	5	2, 000	10, 000	Year1 to Year5
Make available to farmers the results / technologies resulting from research (local radio, TV, brochure, etc.)	Year	5	2,000	10,000	Year1 to Year5
Proceed with collection, storage and final disposal of obsolete and outdated chemicals products	Year	5	10, 000	50, 000	Year1 to Year5
Prepare Information-Education-Communication (IEC) booklets so that populations (farmers) are informed and sensitized on IPM approaches and the responsible use of	Year	5	4, 000	20, 000	Yearl

Activity	Units	Qties	Unit Cost (US \$)	Total cost (US \$)	Calendar
pesticides.					
Accompany and subsidize farmers in the acquisition of personal protective equipment	Region	5	4, 000	20, 000	Year2
Promote the establishment of community committees and provide them with the means to carry out their mission to raise awareness about IPM and good phytosanitary practices	Region	5	2, 000	10, 000	Year2 and Year3
Develop database with appropriate formats in collaboration with the PPRSD divisions, VSD (MoFA) and EPA	Fate rate	5	3, 000	15, 000	Yearl
Objectif 3 : Capacity buildir	ng of actors	involved	in integrated	pest manager	nent
Conduct IEC to farmers and populations on IPM approaches and the judicious use and management of pesticides, hazards and good hygiene practices in the use of agricultural inputs	Region	5	10, 000	50, 000	Year2, Year3 and Year4
Strengthen the exchange of information on pesticide management with other stakeholders involved in pesticides.	Region	5	1, 000	5,000	Year1 to Year5
Train regional health officers on the management of poisoning cases due to pesticides (toxicology) and set up a database to monitor cases of intoxication.	Region	5	10, 000	50, 000	Year1 and Year1
Actively involve civil society, including NGOs and outreach committee in information / education / communication in popularizing approaches to integrated pest management	Region	5	4, 000	20, 000	Year1 to Year5
Objectif 4 : Provide control, monitoring and evaluation of pest and pesticide managemen					
Perform periodic checks and analyzes	Fate rate	1	20, 000	20, 000	Year1 to Year5
Provide supervision and final evaluation of the PMP	Fate rate	1	30, 000	30, 000	Year2 to Year5
Provide post-clearance import control before customs clearance	Fate rate	1	2, 000	2, 000	Year1 to Year5
TOTAL				507, 000	

CONCLUSION

The implementation of WAATP activities in Ghana will have positive environmental and social impacts as well as some economic benefits for the rural farming populations of the targeted crops (cassava, yam, sweet potato, maize, rice, vegetable, small ruminants and poultry) as well as research and development institutions.

In terms of animal production and agricultural productivity, these impacts will be manifested in terms of improving the quality and availability of seeds and planting material; use of sustainable agricultural technologies for the environment; maintaining fertility levels on agricultural land; extension of credible alternatives to chemical control and amendment.

Potential negative impacts include mainly health risks related to pesticide use and a poor management of obsolete packaging and products; pollution of water resources and the irrational use of fertilizers and pesticides.

In order to minimize and manage the environmental and health risks associated with the use of pesticides, integrated pest management and pesticide control is envisaged through the implementation of the PMP.

The diagnosis on the phytosanitary situation made it possible to draw up an inventory of the pests and the diseases which could affect the Production of seeds, planting material and animal in the program area.

The main pests of the target crops that occur in this area are: Variegated grasshopper, *Zonocerus variegatus* (Cassava), Termites, *Microtermes spp.* (Yam) and Armyworms (*Spodoptera exempta*) (maize, rice, sorghum). With regard to animal diseases, the Newcastle disease and the Infectious bursal disease (Gumboro) affect poultry; Anthrax and Blackleg are a disease that affects small ruminants (sheep, goats).

The Exchanges with the various stakeholders made it possible to note that farmers in general, systematically resort to chemical pesticides to control pests.

Famers do not master the techniques of identifying phytosanitary problems and pesticide use patterns well enough. Most farmers use unregistered pesticides. Unfortunately, there are several reasons for the use of unapproved pesticides by producers. Key among them includes:

- reduced cost compared to approved pesticides;
- availability to farmers in terms of proximity (unapproved products sold on local markets);
- inadequate supervision and the difficulties associated with effective control of the pesticides used:
- difficult access to approved pesticides (in terms of proximity).

Therefore, this PMP pays special attention to the following aspects:

- information, awareness-raising, capacity building for the various actors in the target crops sector on methods of responsible and effective use of plant protection products in general, and integrated pest management approaches (IPM) in particular,
- appropriate equipment and infrastructural support,
- support/enforcement of certain regulatory provisions

The implementation of the PMP will minimize impacts on the biophysical and human environment in the program area already affected by increased use of chemicals. The monitoring and evaluation of the activities planned in the PMP will be carried out by the Project's Environmental Unit in collaboration with the PPRSD with strong backing from the key directorates or entities in charge of Agriculture, Environment (EPA), Health, Research and other actors.

The results of the stakeholders' consultation on pest management concluded on the following recommendations:

• develop organic farming to minimize environmental degradation and reduce the increased use of plant protection products;

- establish pest and pesticide safety and management committees in each village to effectively educate users on these products;
- strengthen agricultural advisory services by focusing on integrated pest management (IPM) methods to farmers;
- organize mass sensitization on the responsible use of pesticides, in view of the current knowledge level of populations, especially famers;
- strengthen the capacity of health workers in the management of pesticide-related intoxication cases and establish a database of the various cases treated;
- strengthen the technical platform of health centers for better management of cases of intoxication;
- set up storage facilities for unregistered pesticide and empty packaging and regulate the removal these packaging by distributors.

The implementation of the Action Plan of the PMP will require the mobilization of US \$ 507, 000. This budget will be fully funded by WAATP.

LIST OF TABLES

Table 1: Implementing mechanism of the project	16
Table 2: International conventions ratified by Ghana, in connection with WAATP	21
Table 3:WHO Recommended Classification of Pesticides for Hazards	23
Table 4: Role and Mandate of the PPRSD Divisions	24
Table 5:Major insect pests and diseases of Cassava (Manihot esculenta) Crantz	33
Table 6: Major Insect Pests and Diseases of Yam (Dioscorea Sp)	
Table 7: Major Insect Pests and Diseases of Sweet Potatao (Ipomoea Batatus Poir.)	35
Table 8: Major Insect Pests and Diseases of Maize	36
Table 9: Major Insect Pests and Diseases of Rice	
Table 10:Major Insect Pests and Diseases of Sorghum	38
Table 11:Major Insect Pests and Diseases of Soya Bean	40
Table 12:Major Insect Pests and Diseases of Pepper	41
Table 13: Major insect pests and diseases of Okra	41
Table 14: Major insect pests and diseases of Tomato	
Table 15: The following table presents common pests for target crops	
Table 16: Summary of Register of Pesticides as at February 2017	46
Table 17: Legend to Register of Pesticide.	
Table 18: List of alternatives to POP pesticides by area of use	
Table 19: Management of Insect Pests and Disease Of Rice	
Table 20: Management of Insect Pests and Diseases of Soybean	
Table 21: Management of Insect Pests and Diseases of Pepper	
Table 22: Management of Insect Pests and Diseases of Okra	
Table 23: Management of Insect Pests and Diseases of Tomato	
Table 24: Management of Insect Pests and Diseases of Cassava	
Table 25: Management of Insect Pests and Diseases of Yam	
Table 26: Management of Insect Pests and Diseases of Sweet potato	
Table 27: Summary of the environmental and social risks of pesticide management methods	
Table 28: Negative impacts of uncontrolled use of pesticides on the environment	
Table 29: Negative impacts of uncontrolled use of pesticides on health	
Table 30: Measures to Mitigate the Negative Impact of Pesticides	
Table 31: Logical framework of the pest management action plan	
Table 32: Indicators to be followed by RESR	
Table 33: Summary of the Monitoring Plan	75
Table 34: Cost of activities for the implementation of the PMP for the WAATP in Ghana	79

LIST OF PERSONS MET

Name	Designation/Institution
1 valife	Designation/institution

Dr. Alphonsus Belane Technical Expert, WAAPP, MoFA, Accra.

Mr. Augustine O. Danquah M & E Officer, WAAPP, MoFA, Accra.

Mr. Joseph Edmund Deputy Director, Environmental Protection Authority

EPA/CCMC, Accra.

Mr. Ernest Osei Assibey Senior Agricultural Officer, Plant Protection and Regulatory

Services Directorate (PPRSD), Accra.

Mr. Emmanuel Odame Director, Directorate of Agricultural Extension Services

(DAES), MoFA, Accra

Mr. George Prah Deputy Director, Directorate of Crops Services (DCS),

Accra.

Dr. Solomon Ansah Seed Specialist, MoFA

Mr. Roland Addo DCS, MoFA, Seed Unit

Mr. Callistus Achaab Procurement Officer, WAAPP, MoFA, Accra.

Dr. Joseph A. AwuniVeterinary Services Directorate, WAAPP, MoFA, Accra.

Mr. Tetteh Botchy Farmer at Katamansu

Mrs. Theresa Benewa President of Theresa & Co. Green house vegetable group at Abokobi

Mr. John Kpakpah Agriculture Extension (Appolonia operational area)

Mr. Adam I. Alidu PPRSD, MoFA

Mr. Kwasi Wih (SID) PPRSD, MoFA

Mr. Richard Agbewu PPRSD, MoFA

Mr. Christopher. Gritu PPRSD, MOFA

Mr. Ebenezer Aboagye PPRSD, MoFA

BIBLIOGRAPHY

ACDI/VOCA Ghana Pesticide Evaluation and Safer Use Action Plan (PERSUAP) for the Ghana Agricultural Development and Value Chain Enhancement Program (ADVANCE) (Afreh-Nuamah K. 2010)

EPA (2012) Protocols for the biological evaluation of pesticides on selected crops grown in both Humid and Sahel regions of West Africa (Unpublished)

Gerken, *et al.* (2001). Pesticide use and Policies in Ghana by Environmental Protection Agency, Accra, Revised Register of Pesticides as at December 2009 under the Part ii of the Environmental Protection Act, 1994 (Act 490).

Ghana Commercial Agricultural Project (GCAP) Pest Management Plan (PMP). Final Report. November. 2011

Ghana/IPEP Pesticide Evaluation Report and Safer Use Action Plan (Ghana/IPEP PERSUAP) for Production of High Value Crops (Afreh-Nuamah K & Youdeowei Anthony, 2002) Handbook of crop Protection Recommendations in Ghana: An IPM Approach, vols. 1, 2, 3 & 4 HEII/GEPA Pesticides recommended for Horticultural Production (Reference Guide, 2006). The United Republic of Tanzania, Agricultural Sector Development Program (ASDP), Integrated Pest Management Plan (IPMP), Revised Version, Brigitte Nyambo, March 2009 West Africa Agricultural Transformation Programme (WAATP) Project Implementation Manual (DRAFT)

West Africa Agricultural Transformation Programme (WAATP). Ghana Concept Document (MoFA). January 2018

West and Central African Council for Agricultural Research in Africa (WECARD), WORLD BANK WEST AFRICA AGRICULTURAL PRODUCTIVITY PROGRAMME, Pest and Pesticide Management Plan Report, Consultant: Dr Djibril Doucouré, ddouc60@yahoo.com; ddouc@refer.sn, January 2007

Pesticide and Pesticide Management Plan of the Agricultural Productivity Program in West Africa (WAAPP / WAAPP 2a) (Ghana, Mali, Senegal) update of the final report, February 2012

Pesticide and Pesticide Management Plan of the Agricultural Productivity Program in West Africa (WAAPP / WAAPP 1b) (Côte d'Ivoire), February 2010

PNIASA, 2011: Pest and Pesticide Management Plan (PMP) of the National Program for Agricultural Investment and Food Security in Togo. 66p + annexes.

Principles of Integrated Pest Management: Growing Healthy Crops, (Youdeowei Anthony, 2002), MoFA (Ghana), GTZ, ICTA

http://mofa.gov.gh/site/?page_id=74, viewed on June 20, 2018

https://www.msdvetmanual.com/poultry/newcastle-disease-and-other-paramyxovirus-infections/newcastle-disease-in-poultry, viewed on June 20, 2018 https://link.springer.com, viewed on June 30, 2018

https://reseaupommier.irda.qc.ca/, viewed on July 04, 2018

APPENDICES

Appendice1: Basic principle for integrated pest management

PRINCIPLES PRINCIPLE 1

Obtain and plant quality

planting material

IMPLEMENTATION

Choose seeds, cuttings, tubers, or discards from varieties that are highly productive, healthy, and resistant to pests / diseases. To obtain certified seed, contact certified seed companies or national research centers. Farmers will be able to plant material taken from healthy plants from the previous season. Do not store planting material for more than one season. Perform summary germination tests.

RESULTS

The use of quality planting material will result in a healthy and productive crop and, therefore, a quality crop. Certified varieties are often resistant to many pests and diseases. Remember the popular saying that good seeds make good crops.

PRINCIPLE 2

Choose fertile soils and places suitable for planting

Select soils with good natural drainage, suitable for growing. Some crops (eg lowland rice or irrigated rice) prefer submerged soils. Always plant in fields free of weeds. Establish nurseries on disease-free soil to promote seedling development. Cover the soil with a mulch of neem leaves or dry grass. Cut only selected material that is free of pests / diseases

Crops need maximum soil and water management to grow and compete effectively with weeds

PRINCIPLE 3

Adopt good nursery practices

Establish nurseries on disease-free soil to promote seedling development.

Cover the soil with a mulch of neem leaves or dry grass. Cut only selected material that is free of pests / diseases.

After transplanting in the field, the rigorous seedlings thus obtained will produce robust plants.

PRINCIPLE 4

Adopt appropriate planting devices and devices Plant in line, with appropriate spacing, to avoid excessive stand density. Intercropping is usually done in lines, alternate lines or strips.

Plan the planting to avoid periods of prevalence of

Too high a density hinders the development of the crop and, by creating a humid environment, promotes the appearance of diseases. Online planting saves seeds and makes it easier for farmers to

agricultural operations such as weeding and harvesting. Intercropping reduces insect pressure and guarantees yields

Plant crops in a timely manner to match growing season with low incidence of

and

pests

diseases

PRINCIPLE 5

pests and diseases in the fields. Coordinate planting dates at the regional level to prevent the passage of pests between crops and to maintain a seasonal rest period.

Culture escapes periods of high incidence of pests and diseases during their growth and development. The pest development cycle is interrupted. Pest populations do not have the time to reproduce massively.

PRINCIPLE 6Practice crop rotation

Plant crops that do not have pests in common (rotation of cereals and root and tuber crops with vegetables or legumes, for example).

Plant cover crops during the fallow period

Crop rotation prevents the proliferation of soil-borne diseases and pests (eg nematodes or pathogens). Cover crops enrich the soil and smother the weeds.

PRINCIPLES

IMPLEMENTATION

RESULTS

PRINCIPLE 7

Adopt good

soil

conservation

practices

Cover the soil with mulch, amend the soil with compost or organic fertilizer and, if necessary, rectify the nutrient balance with mineral fertilizers to enrich poor soils.

Split fertilizer inputs, especially nitrogen, to better

meet the needs of the crop.

PRINCIPLE 8

Adopt appropriate water

water management practices Plant in well drained soils (except for rice). If necessary, construct drainage channels to remove excess water; prepare water collection canals (in plantain plantations, for example) to provide a water reserve

sufficient. In irrigated condition, regularly irrigate

the plants as needed

Poor soils are enriched inexpensively to stimulate growth and development of healthy crops and to obtain high yields. The fertilizer is used economically.

Growth and development of culture are not compromised by lack of water; in addition, the plants do not suffer from waterlogging.

PRINCIPLE 9Weed regularly

Install crops in fields free of weeds. To prevent the production of weed seeds, bale within three weeks after planting and superficially sow by hand until the crop canopy closes.

Tear off the first weeds before they are bloomed and mounted

avoid hurting the roots of culture. Competition between crops and weeds is eliminated; they can not produce seeds. Parasitic weeds can not be established in fields

This measure saves manpower and to

PRINCIPLE 10

Regularly inspect the fields

Inspect fields weekly to monitor crop growth and development, track auxiliary populations, and quickly detect pests, diseases and weeds; perform an agroecosystem analysis and make a decision on the cultural operations to be carried out.

Regular field inspection allows farmers to detect problems and implement the integrated control measures needed to prevent further damage and, as a result, significant yield losses.

PRINCIPLE 11

Keep the fields perfectly clean

Always keep the fields in a clean state. Eliminate all residues (previous campaign plants and plant residues, for example); most residues are used as fodder for livestock. Tear up and destroy crops with symptoms of disease early in the growing season. After the harvest, remove crop residues (mow them and use them as fodder for cattle or bury them)

These results prevent the proliferation of pests and diseases and their passage from one companion to another. Pests and diseases can not spread to the entire farm.

PRINCIPLE 12

Effectively fight pests and diseases

Adopt a strategy on prevention and augmentation of auxiliary populations. Avoid the means of fight harmful to the man or the culture as well as those which degrade the environment; favor mechanical or natural methods (seed extract / neem leaves, soapy solution

for example). If the use of chemical pesticides proves to be unavoidable, (eg cases of pest infestation forests, apply the appropriate product to the recommended areas, according to the required technique, respecting the precautionary measures.

Pest problems and diseases are circumscribed, allowing high and sustainable production, with a minimum of expensive inputs. Natural products are less expensive and less harmful to humans and

PRINCIPLES

PRINCIPLE

13 Encourage the growth natural enemies (auxiliary) populations

IMPLEMENTATION

practices that create environmental conditions favorable to the reproduction of enemies (minimal use of synthetic pesticide, use of plantbased producers such as neem extracts and mulching to stimulate the reproduction of natural enemies such as predatory ants, spiders, carabids, syrphids and ladybugs).

RESULTS

Pest populations are effectively and naturally controlled by large populations of natural enemies. Natural control of pests does not harm humans or the environment.

PRINCIPLE

14 Minimize the application of chemical pesticides

Avoid the systematic and regular application of pesticides. In case of real need, treat only with selective pesticides. Prefer products of plant origin. Refrain from dealing with plant protection products as soon as the first pests or symptoms appear. Always analyze the agro-system before any treatment decision. In the event of pest outbreaks and serious damage, treat with natural products (seed extracts / neem leaves or soapy solution).

The parsimonious use of selective chemical pesticides allows auxiliary populations (eg ants, predators, spiders, mantes and ladybugs) to grow at the expense of pests. This is a natural method of pest control

PRINCIPLE 15 Adopt good harvesting

practices

Harvest the crops as they mature; be careful not to injure, tear, break or otherwise damage the harvested products. Avoid harvesting or storing fruits and vegetables in direct sunlight.

Farmers get better prices for clean and unharmed products. Pest free products are more easily preserved because they have no entry point to pests and pathogens. Products freshly harvested and kept at a low temperature are kept longer.

PRINCIPLE 16 Adopt clean and quality storage

devices.

The stores are always clean, dry and well ventilated. Store only whole products. Keep crops in airtight containers to protect them from attic pests. In general, the damage caused by stock pests worsens sharply after three months of storage; therefore, divide the harvests into several lots according to the shelf life. Only treat lots for longterm storage (with suitable products such as neem oil or pesticides recommended for stored products).

The quality of stored products is retained during storage. Stored products have little exposure to pests and pathogens. The stored grains remain dry. The recommended pesticides for the treatment of stocks are used economically.

Appendice2 : Guide to Good Pesticide Management Practices

Actions required to reduce the risks of pesticides

Safe use of pesticides .

Pesticides are toxic for vermin but also for humans. However, taking sufficient precautions should not pose a threat to the public or to non-target animal species. Most of them can have harmful effects if swallowed or if they remain in prolonged contact with the skin. When a pesticide is sprayed in the form of fine particles, it may be absorbed by the air being breathed. There is also a risk of contamination of water, food and soil. Special precautions must be taken during transport, storage and handling of pesticides. The spreading equipment should be cleaned regularly and maintained to avoid leaks. People who use pesticides must learn to use them safely.

Homologation of insecticides

Strengthen the procedure for the approval of insecticides by ensuring:

- harmonization between the national pesticide registration system and other products used in public health;
- the adoption of the WHO specifications for pesticides for the purposes of the national approval procedure;
- strengthening the regulatory lead agency;
- the collection and publication of data on imported and manufactured products;
- the periodic review of the approval.

It is also recommended, when purchasing pesticides for vector control, to follow WHO guidelines. For the procurement of insecticides for public health the following guidelines are recommended:

- develop national guidelines for the procurement of vector control commodities and ensure that all procurement agencies adhere to them scrupulously;
- refer to guidelines issued by WHO or FAO regarding tendering, FAO recommendations for labeling and WHO recommendations for products (for in-house spraying);
- include in the calls for tenders the details of the technical support, maintenance, training and recycling of the products that will form part of the after-sales service involving the manufacturers; apply the principle of return to sender;
- control the quality and quantity of each batch of insecticides and impregnated substrates before receiving orders;• ensure that products are clearly labeled in French and if possible in the local language and in strict compliance with national requirements;
- specify what type of packaging will ensure efficiency, shelf life and human and environmental safety when handling packaged products, in strict compliance with national requirements;
- ensure that public health pesticide donations meet the requirements of the Mali Licensing Procedure (CSP) and can be used before their expiry date;
- Establish a consultation, before receiving a donation, between the ministries, structures concerned and donors for rational use of the product;
- require users to wear recommended protective clothing and equipment to minimize insecticide exposure;
- obtain from the manufacturer a physico-chemical analysis report and certification of the acceptability of the product;

- require from the manufacturer an analysis report of the product and its formulation with indication of what to do in case of intoxication;
- have the buyer perform a physico-chemical analysis of the product before shipment and upon arrival at the site.

Precautions

Labeling

Pesticides must be packaged and labeled in accordance with WHO standards. The label must be written in English and French and in the language of the place; it must indicate the contents, the safety instructions (warning) and all measures to be taken in case of ingestion or accidental contamination. The product should always remain in its original container. Take appropriate precautionary measures and wear protective clothing as recommended Storage and transport Pesticides must be kept in a place that can be locked and not accessible to unauthorized persons or children. In no case should pesticides be kept in a place where they might be taken for food or drink. They must be kept dry and out of direct sunlight. They should not be transported in a vehicle that is also used for transporting foodstuffs. In order to ensure safety in storage and transport, the public or private structure in charge of managing the insecticides and insecticide-treated supports that have been acquired must comply with the regulations in force and the storage conditions recommended by the manufacturer related to:

- the preservation of the original labeling,
- prevention of spills or accidental spills,
- the use of appropriate containers,
- the proper marking of stored products,
- specifications relating to the premises,
- the separation of products,
- protection against moisture and contamination by other products, restriction of access to storage rooms,
- the locked storage warehouse to ensure the integrity and safety of the products Pesticide warehouses should be located away from human dwellings or animal shelters, water sources, wells and canals. They must be located on a height and secured by fences, their access being reserved for authorized persons.

Pesticides should not be stored where they are likely to be exposed to sunlight, water or moisture, which could affect their stability. Warehouses must be secure and well ventilated. Pesticides and agricultural products, foodstuffs, clothing, toys or cosmetics should not be carried in the same vehicle as these products could become dangerous in the event of contamination. Pesticide containers must be loaded into vehicles so that they are not damaged during transport, their labels are not torn off, and they do not slip and fall on a road whose coating may be irregular. Vehicles carrying pesticides must have a warning sign in a prominent position indicating the nature of the load.

Distribution

Distribution should be guided by the following guidelines:

- The packaging (original packaging or new packaging) must ensure safety during distribution and avoid the unauthorized sale or distribution of products for vector control;
- the distributor must be informed and aware of the dangerous nature of his load;the distributor must make deliveries within the agreed deadlines; the system of distribution of

insecticides and impregnated supports must make it possible to reduce the risks linked to the multiplicity of the manipulations and the transports;

- If the purchasing department is not able to transport the products and equipment, it must be stipulated in the calls for tenders that the supplier is obliged to transport the insecticides and impregnated supports until warehouse;
- all insecticide dispensers and spreading equipment must have an operating license in accordance with the regulations in force in Mali.

Elimination of pesticide stocks

After the operations, residual insecticide can be disposed of safely by dumping it into a specially dug hole or pit latrine. Do not dispose of a pesticide by dumping it in a place where it may contaminate water used for washing or washing or reach a pond or stream. Some insecticides, such as pyrethroids, are very toxic to fish. Dig a hole at least 100 meters from any watercourse, well or dwelling. If you are in a hilly area, you have to dig the hole below. Pour all the water used for hand washing after treatment. Bury all containers, boxes, bottles etc. which contained pesticides. Fill in the hole as quickly as possible. Packaging or containers made of cardboard, paper or plastic - these, cleaned - may be burned, if permitted, away from homes and sources of drinking water. Regarding the reuse of containers after cleaning.

Pyrethroid suspensions can be spilled on dry soil where they will be rapidly absorbed and subsequently decomposed to render them harmless to the environment.

If a certain amount of insecticide solution remains, it can be used to kill ants and cockroaches. Simply pour a little solution on the infested places (under the kitchen sink, in the corners) or spend a soaked sponge. To temporarily hinder the growth of insects, a certain amount of solution can be poured into and around latrines or other breeding sites. Pyrethroid solutions for the treatment of mosquito nets and other tissues can be used within days of their preparation. It can also be used to treat mats and rope mats to prevent mosquitoes from stinging from below. You can also treat mattresses to fight bed bugs.

Cleaning empty packaging and containers of pesticides

Reusing empty pesticide containers is a risk and it is not recommended to do so. However, it can be considered that some pesticide containers are too useful to be discarded purely and simply after use. Can we clean and reuse such containers? It depends on both the material and the content. In principle, the label should indicate the possibilities of reusing containers and how to clean them.

Under no circumstances should containers that have contained pesticides classified as very dangerous or extremely dangerous be reused. Under certain conditions, pesticide containers classified as low risk or not normally hazardous under normal use may be re-used provided that it is not intended to contain food, drink or feed. Containers made of materials such as polyethylene, which preferentially absorb pesticides, should not be re-used if they have contained pesticides whose active ingredient is classified as moderately, very or extremely dangerous, regardless of the formulation. Once a container is empty, rinse it, then fill it completely with water and let it sit for 24 hours. Then it is emptied and the operation is repeated twice.

General hygiene

Do not eat, drink or smoke when handling insecticides. The food should be stored in hermetically sealed boxes. Measurement, dilution and decanting of insecticides should be done with the appropriate equipment. Do not shake or take liquids with bare hands. If the nozzle has blown

Individual protection

- Suitable combination covering the whole hand and the whole foot.
- Anti-vapor or respiratory dust masks depending on the type of treatment and product used.
- Gloves.
- Glasses.
- Hoods (face shield).

Protection of populations

- Minimize exposure of local populations and livestock.
- Cover wells and other water supplies.
- Make people aware of the risks.

Protective clothing

Treatments inside homes

Operators should wear a work overall or long-sleeved shirt over pants, a wide-brimmed hat, a turban or other type of headgear and boots or large shoes. Sandals are not suitable. You must protect your mouth and nose with a simple means, such as a disposable paper mask, a disposable or washable surgical mask or a clean cotton cloth. As soon as the fabric is wet, it must be changed. Clothes must also be made of cotton to facilitate washing and drying. They must cover the body and have no openings. In hot and humid climates, it may be uncomfortable to wear extra protective clothing, so you will try to spread the pesticides during the hours when the heat is lowest

Preparation of suspensions

People who are responsible for bagging insecticides and preparing suspensions, especially at the nets impregnation units, must take special precautions. In addition to the protective clothing mentioned above, they must wear gloves, an apron and eye protection, such as a face shield or glasses. Face shields protect the entire face and keep it warmer. Cover your mouth and nose as indicated for indoor treatments. Do not touch any part of your body with gloves while handling pesticides.

Impregnation of fabrics

To treat mosquito nets, clothes, fences or tsetse traps with insecticides, it is imperative to wear long rubber gloves. In some cases, additional protection is needed, for example against vapors, dust or spray of insecticides that can be dangerous. These additional protective accessories must be mentioned on the product label and may consist of aprons, boots, face masks, coveralls and hats.

Interview

Protective clothing should always be kept clean and periodic checks should be made to ensure that there are no tears or wear on the fabric that could lead to contamination of the epidermis. Protective clothing and equipment should be washed daily with soap and water, separately from other clothing. Gloves should be given special attention and should be replaced as soon as they are torn or show signs of wear. After use, rinse with plenty of water before removing. At the end of each working day, wash them outdoors and indoors.

Security measures

During spraying

The jet coming out of the sprayer must not be directed towards a part of the body. A leaking sprayer must be repaired and the skin washed if accidentally contaminated. The occupants of the house and the animals must stay outside for the duration of the operations. Avoid treating a room in which there is a person - a patient for example - that can not be transported outside. Before spraying begins, all kitchen utensils, crockery and everything that contains drinks or food should

be taken out. They can also be assembled in the center of a room and covered with a plastic sheet. Hammocks and paintings or hangings should not be treated. If it is necessary to treat the bottom of the furniture and the side towards the wall, one will take care that the other surfaces are actually treated. The floor must be swept or washed after spraying. Occupants should avoid contact with the walls.

Clothing and equipment should be washed daily. Avoid spraying organophosphates or carbamates for more than 5 to 6 hours per day and wash hands after each fill. If Fenitrothion or old stocks of Malathion are used, all operators must have their blood cholinesterase checked weekly.

Organophosphorus exposure monitoring

Field kits are commercially available to control the activity of blood cholinesterase. If this activity is low, it can be inferred that there has been excessive exposure to an organophosphorus insecticide. These dosages must be performed every week in all people who handle such products. Anyone whose cholinesterase activity is too low should be put off work until they return to normal.Impregnation of fabricsWhen handling insecticide concentrates or preparing suspensions, gloves should be worn. It is necessary to pay attention especially to projections in the eyes. It is necessary to use a large basin not too high and it is necessary that the room is well ventilated so that one does not risk to inhale the fumes.

Measures to reduce the risks of transport, storage, handling and use

Step	Determinants	Risks			Mitigation
		Public Health	Environement	Staff	measure
		discoverment	Accidental	-Inhalation of	extensive training-
	Lack of	of pesticides in	spill, ground	product:	awareness-raising
Transport	training	inhabited	water pollution	steam, dust,	of pesticide
		places	by leaching	-risk of skin	management staff
				contact	on all aspects of
	- Lack of	Accidental	~	Contact with	the pesticide
	means to	contamination	Soil	the skin by	pipeline as well as
Storage	realize the	-Gene,	contamination	reversal	on emergency
	wharehouse	nuisance of the		caused by the	responses
	-training deficit on	nearby		exiguity of the	- equip staff with
		populations		places	protective
	pesticide				equipment and encourage
	management Training and	Contamination	Soil	Inhalation of	its full port
	awareness	of water	contamination	steam, dermal	- provide adequate
Handling /	deficit	sources by	by accidental	contact by	storage equipment,
manipulation	deficit	washing	or intentional	splashing	rehabilitate
manipulation		containers	spill,	during	existing sites
		Contamicis	groundwater	preparation or	- to raise public
			pollution	transfer of	awareness about
			r	porridge	the use of
Elimination	Training and	Ingestion of			pesticides and their
of	awareness	products	Dermal	Elimination of	containers
Packaging/	deficit	through the	contact and	Packaging	- training on the
containers		reuse of	respiratory		management of
		containers	system		empty containers
			-Intoxication		for safe disposal
	Training and	Dermal	of fish and		- prohibit high
Washing	awareness	contact, wells	other		volume containers

Step	Determinants			Mitigation	
_		Public Health	Environement	Staff	measure
containers	deficit	contamination	crustaceans,	Dermal contact	to prevent decanting
			-pollution of wells and ponds, groundwater, -Selection of resistance at the larval stage	Contact	- decrease the quantity of pesticides used by the effective use of alternatives

Signs of intoxication and appropriate care for the victims

Signs of poisoning

Appropriate care

Contamination of the eyes (pain or irritation)

Rinse thoroughly with tap water If this worsens, consult a doctor

Irritation of the skin (tingling and burning sensations)

Wash contaminated area with water, never

with oil

Put a soothing cream on

If it does not calm, consult a doctor

Feeling tired, headaches or dizziness

To rest

Do not do it again before feeling totally

rested

If this does not calm, consult a doctor

Contamination of the lungs

Stay in the shade

Put under medical supervision

Modes of treatment of empty containers

The treatment of empty containers revolves around two fundamental operations: decontamination and elimination as such with its conditioning prerequisite.

Decontamination

It comprises three stages and concerns all pesticide containers:

- ensure the maximum draining of the product and draining for 30 seconds (the contents are emptied into a mixing container, into a glass for the last dosage with regard to the impregnation);
- rinse the container at least three times with a volume of water that should not be less than 10% of the total volume of the container;
- pour the rinsing water into a sprayer, into a pit (impregnation).

However, a decontaminated container is not eligible for storage of food or feed products or water for domestic consumption.

Elimination

Unless it is contemplated that the containers will be recovered, the first disposal operation is to render them unusable for other purposes: "conditioning". Also make sure to make holes with a sharp tool and flatten the container when it comes to metal drums and for drums; glass bottles must be broken into a bag to avoid splinters; the plastics are shredded and crushed. Bungs or capsules are previously removed.

Combustible containers are removed by controlled burning (paper and plastic packaging [PVC cans should not be burned], cardboard) or deposited in a landfill accepting toxic waste of this nature (cut into cans) plastic, glass and metal); ashes resulting from bare burning are buried. However, the label affixed to the receptacle may bear a mention against burning. Indeed the burning for example of certain containers of herbicides (based on phenoxy acid) may cause the release of toxic vapors for man or the surrounding flora.

Precautions: Combustion should only occur under conditions where there is no risk of the wind pushing toxic smoke towards nearby dwellings, people, livestock or crops, or to those who do not smoke surgery.

Large non-combustible containers 50 to 2001 can follow the following channels:

- •return to the supplier,
- sale / recovery to / by a company specialized in the trade of used barrels and barrels having the technology of neutralization of the toxicity of the adherent materials which can also proceed to their recovery,
- evacuation to a controlled landfill where the operator is informed of the contents of the drums and is warned of the potential release of toxic vapors if a combustion is applied,
- evacuation to a private site, fenced, guarded, respecting environmental standards and used specifically for pesticides.

Small non-combustible containers up to 20 l are either:

- sent to the landfill.
- buried on a private site after removal of the capsules or lids, perforations of the containers, breaking of the glass containers.

The 1 to 1.5 m deep pit used for landfilling will be filled up to 50 cm from the soil surface and then covered with soil. The site will be remote from homes and water points (wells, ponds, streams), must be uncultivated and will not be in a flood zone; the aquifer must be at least 3 m from the surface of the ground, the ground must be impervious (clay or clear). The site will be closed and identified

Annexe 3 : List of Registered or Banned Pesticides

(A) Fully Registered Pesticides (FRE)

(A1) Insecticides

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
6	Abalone 18 EC	FRE/1706/1114G February 2017	Abamectin (18g/l)	II	Acaricide for the control of red spider mite, two-spotted spider mite and tomatoes russet mite in tomatoes.	Calli Ghana Limited, Tema
7	Abamet	FRE/1699/1002G August 2016	Abamectin (92%)	II	Insecticide for the control of two-spotted mite in cotton and tomato	Rainbow AgroSciences Co. Ltd., Tema
8	Aceta Star EC	FRE/15100/00914G September 2015	Bifenthrin (30g/l) + Acetamiprid (16g/l)	II	Insecticide for the control of capsids in cocoa	Adama West Africa Ltd., Accra
9	Actellic 300CS	FRE/1406/00811G December 2014	Pirimiphos- methyl (300g/l)	III	Insecticide for public health purposes	Calli Ghana Co. Ltd., Tema
10	Actellic Gold Dust	FRE/1506/00920G September 2015	Pirimiphos- methyl (16g/kg) + Thiamethoxam (3.6g/kg)	III	Insecticide for control of sitophilus zeamais in stored maize	Calli Ghana Ltd., Tema
11	Actforce 48EC	FRE/15145/00940G December 2015	Chlorpyrifosethlyl (48%)	II	Insecticide for the control of insect pests in rice, cotton, vegetables and citrus	Jubaili Agrotec Ltd, Accra
12	Agricom bi 40EC	FRE/1602/1040G August 2016	Fenitrothion (30%) + Fenvalerate (10%)	III	Insecticide for the control of aphids, mites and weevils in cotton, fruits and vegetables	Agrimat Ltd., Madina, Accra
13	Akape 20SC	FRE/1602/1041G August 2016	Imidacloprid (20%)	III	Insecticide for the control of insect pests in vegetables	Agrimat Ltd., Madina, Accra
14	Alphace p	FRE/1502/00935G December 2015	Alpha- cypermethrin	III	Insecticide for the control of	Agrimat Limited,

	10 SC		(100 g/l)		insect pest in	Accra
					vegetables and	
					fruit crops	
15	Antuka	FRE/1655/00959G	Pirimiphos-	II	Insecticide for	Louis Dreyfus
	95EC	January 2016	methyl $(80g/l) +$		the control of	Commodities
			Permethrin		Sitophilus	Ghana Ltd.,
			(15g/l)		zeamais,	Accra
					Callosobruclus	
					maculatus,	
					aphids and	
					bollworms in	
					cereals	

1	N Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
16	Ateco Super 25EC	FRE/1543/00867G June 2015	Pirimiphos- methyl (250g/l)	II	Insecticide for the control of insect pests in stored cereals, cowpea and soybean	Kumark Company Limited, Kumasi
17	Attack 1.9EC	FRE/14104/00723G October 2014	Emamectin Benzoate (1.9%)	II	Insecticide for the control of insect pests in vegetables	Agrimat Limited, Madina, Accra
18	Ataka Super EC	FRE/1657/1062G September 2016	Emamectin Benzoate (19.2g/l)	III	Insecticide for the control of diamondback moth and cotton bollworm in cabbage and cotton	Wynca Sunshine Agric Prdt &Trad. Co. Ltd, Accra.
19	Aventall 300WG	FRE/15139/00893G August 2015	Indoxacarb (300g/kg)	III	Insecticide for the control of insect pests in fruits, vegetables, rice and cotton	Jingbo Agrochemical s Tech. Gh. Co. Ltd., Accra.
20	Bastion Extra SG 3%	FRE/1655/00960G January 2016	Imidacloprid (3%)	II	Insecticide for the control of rice hoppers, aphids, thrips, whiteflies, termites, and beetles in cereals	Louis Dreyfus Commodities Ghana Ltd., Accra

21	Betallic Super	FRE/1425/00790G November 2014	Pirimiphos methyl (400g/l) + Permethrin (75g/l)	II	Insecticide for the control of insect pests in maize and cowpea	Bentronic Productions, Kumasi
22	Bextoxi n	FRE/1425/00776R November 2014	Aluminium Phosphide (57%)	II	Insecticide for the control of pest in stored grains	Bentronic Productions, Kumasi
23	Black Mosquit o Coil	FRE/1441/00714G October 2014	Dimefluthrin (0.03%)	III	Insecticide for the control of mosquitoes	Jayraj Company Ltd, Accra
24	Bomec EC	FRE/1555/00881G August 2015	Abamectin (18g/l)	II	Insecticide for the control of aphids, caterpillars, whiteflies, grasshoppers and bollworms in vegetables	Louis Dreyfus Commodities Ghana Ltd, Tema
25	Bonlam bda 2.5EC	FRE/15149/00937G December 2015	Lambda- cyhalothrin (25g/l)	II	Insecticide for the control of aphids, whiteflies and mealybugs in vegetables	Bon Agro Company Limited, Kumasi

	s Trade N Name o	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
26	Bossma e 2.5EC		Lambda- cyhalothrin (25g/l)	II	Insecticide for the control of insect pests in vegetables, cowpea and soybean	K. Badu Agrochemical s, Kumasi
27	Box 18EC	FRE/17145/1090G February 2017	Abamectin (1.8%)	П	Insecticide for the control of bollworms, red spider mites, cabbage worm, psyllas in soybean, cotton, and tangerine	Jubaili Agrotec Ltd., Kumasi

28	Bypel 1	FRE/16133/1033G August 2016	Perisrapae Granulosis Virus + Bacillus thuringiensis	II	Bio-insecticide for the control of whiteflies and worms in vegetables and fruits	Abnark Agro Services, Kumasi
29	Callifan Super 200SC	FRE/1506/00930G December 2015	Acetamiprid (100g/l)+Bifenthr in (100g/l)	II	Insecticide for the control of mirids in cocoa	Calli Ghana, Tema
30	CeraTrap	FRE/1408/00823G December 2014	Hydrolyzed proteins (5.5%w/w)	U	Fruit fly attractant	Dizengoff Ghana Ltd., Accra
31	Chlorlet 48EC	FRE/15145/00940G December 2015	Chlorpyrifos-ethyl (48%)	II	Insecticide for the control of insect pests in rice and cotton	Agrotec
32	Clear 2.5EC	FRE/1650/00986G March 2016	Lambda-cyhalothrin (25g/l)	II	Insecticide for the control of insect pests in vegetables	Enterprise.
33	Condifor Super	FRE/1543/00872G June 2015	Imidacloprid (20%)	II	Insecticide for the control of insect pests in vegetables	Company
34	Condor SL	FRE/1425/00777G November 2014	Imidacloprid (20%)	II	Insecticide for the control of insect pests in vegetables	Productions,
35	Confidor 200 OD	FRE/17185/1107G February 2017	Imidacloprid (200g/l)	III	Insecticide for the control of mirids in cocoa.	
36	Conpyrifo s 48EC	FRE/1578/00915G September 2015	Chlorpyrifos-ethyl (480g/l)	II		Continents, Accra
37	Super 200SL	FRE/1623/1085G November 2016	(200g/l)	II	Insecticide for the control of insect pests in vegetables	Enterprise,
38		FRE/1578/00916G September 2015	Lambda-cyhalothrin (25g/l)	II	Insecticide for the control of insect pests in vegetables and pulses	Five Continents,

		0	Concentration of Active Ingredient	Hazar d Class		Local Distributor	
39	Conti-zol	FRE/1578/00917G	Diazinon (50%)	II	Insecticide for the	Five	

	50EC	September 2015			control of pests in vegetables	Continents, Accra
40	Control 5WDG	FRE/14104/00720G October 2014	Emamectin benzoate (5%)	II	Insecticide for the control of aphids, worms and borers in vegetables	Agrimat Limited,
41		FRE/1698/1122G December 2016	Lambda-cyhalothrin (2.5g/l)	II	Insecticide for the control of insect pest in vegetables and horticulture crops	Enterprise, Kumasi
42	Cydim Super EC	FRE/14104/00719G October 2014	Dimethoate (400g/l) + Cypermethrin (36g/l)		Insecticide for the control of aphids, caterpillars, whiteflies, grasshoppers, bollworms in vegetables	Limited, Accra
43	Cyhalon 2.5 EC	FRE/1718/1124G January 2017	Lambda-cyhalothrin (25g/L)	III	Insecticide for the control of pests in vegetables	
44	Cypadem 43.6EC	FRE/1657/1067G September 2016	Dimethoate (400g/l) + Cypermethrin (36g/l)		Insecticide for the control of insect pests in vegetables and field crops	Wynca Sunshine
45	Cypersect super	FRE/1425/00779G November 2014	Dimethoate (400g/l) + Cypermethrin (36g/l)		Insecticide for the control of aphids, caterpillars, whiteflies, grasshoppers and bollworms in vegetables	Productions, Kumasi
46	Cypercal 50 EC	FRE/1706/1110G February 2017	Cypermethrin (50g/l)	II	Insecticide for the control of insect pest in cotton.	
47	Cyperdim EC	FRE/1416/00769G November 2014	Dimethoate (250g/l) + Cypermethrin (35g/l)	II	Broad spectrum insecticide for the control of pests in fruits and vegetables	Company
48	Cypex Maxi Smoke Generator	FRE/14104/00724G October 2014	Potassium chlorate (20% w/w) + Cypermethrin (13.5% w/w)			Agrimat Limited, Madina, Accra

49	D-Ban	FRE/1543/00869G	Chlorpyrifos (48%) II	Insecticide for the Kumark
	Super	June 2015		control of insect Company Ltd,
	48EC			pests in vegetables Kumasi
				j - 1

]	No Trade Name	Registration No. Date of Issue		Hazard Class		Local Distributor
50	Dean 62EC	FRE/1655/1032G August 2016	Imidacloprid (50g/l) + Emamectin benzoate (12g/l)		Insecticide for the control of insect pests in vegetables	Commodities
51	Deltacal 12.5 EC	FRE/1706/1111G February 2017	Deltamethrin (12.5g/l)	II	Insecticide for the control <i>helicoverpa</i> armigera and whiteflies in green beans and tomatoes	Company Ltd., Tema.
52	Deltapaz 1.25EC	FRE/1400/00814G December 2014	Deltamethrin (12.5g/l)	II	Insecticide for the control of insect pests in various crops	Africa Ltd.,
53	Diazol 50EW	FRE/14100/00757G November 2014	Diazinon (500g/l)	II	Insecticide for the control of insect pests in vegetables	Africa Ltd.,
54	Dimeking EC	FRE/1599/00852G August 2015	Dimethoate (400 g/l)	II	Insecticide for the control of insect pests in fruits, cotton and	
55	Dimex 400EC	FRE/1455/00735G October 2014	Dimethoate (400g/l)	II	Insecticide for the control of aphids, plant bugs, fruit	Louis Dreyfus
56	Dursban 4E	FRE/1505/00908G August 2015	Chlorpyrifos-ethyl (480g/l)	II	Insecticide for the control of scale, borers and cockroaches	Tema
57	Dusfos 480EC	FRE/1455/00781G November 2014	Chlorpyrifos-ethyl (480g/l)	II	Insecticide for the control of insect pests in crops and for public health	Productions,
58	Efforia 45EC	FRE/16185/1024G August 2016	Lambda- cyhalothrin (25%) + Thiamethoxam (3%)		Insecticide for the control of insect pests in vegetables	Limited,
59	Ekuapa 2.5EC	FRE/1623/1084G November 2016	Lambda- cyhalothrin (25g/l)	II	Insecticide for the control of insect pests in vegetables	Thomas Fosu Enterprise,

					and pulses	
60	Ema	FRE/16100/00998G	Emamectin	II	Insecticide for	Adama Wes
	19.2EC	August 2016	benzoate (19.2%)		control of pests in	Africa Ltd
					vegetables and	Accra
					pulses	
61	Ema Star	FRE/16100/1079G	Emamectin	II	Insecticide for the	Adama Wes
	112EC	November 2016	benzoate (48g/l)+	-	control of	Africa Lto
			Acetamiprid (64g/l)		whiteflies,	Accra.
					diamondback moth,	
					aphids in okra and	
					eggplant.	

	No Trade . Name	Registration No. Date of Issue		Hazard Class		Local Distributor
62	Eradicoat T	FRE/16125/1074G September 2016	Maltodextrin (282g/l)	III	Insecticides for the control of insect pests in fruits and vegetables	Trading
63	Evict EC	FRE/1453/00786G November 2014	Lambda- cyhalothrin (2.5%)	II	Insecticide for the control of insect pest in vegetables	-
64	Evisect S 50SP	SFRE/1506/00918G September 2015	Thiocyclam oxalate (500g/kg)	II	Insecticide for the control of leaf miners in oil palm	Co Ltd
65	Evite 340WP	FRE/15139/00890G August 2015	Tebufenozide (300g/kg) + Emamectin benzoate (40g/kg)	II	aarmyworms,	Tech. Gh. Co. Ltd., Accra.
66	Farin 200EC	FRE/15142/00844G June 2015	Chlorpyrifos-ethyl (200g/l)	II	Insecticide for the control of fruit borers, whiteflies, thrips, caterpillars of pepper, oil palm, soybean and tomatoes	Limited, Accra
67	Fastrack 10 SC	FRE/1502/00954G December 2015	Alpha-cypermethrin (100 g/l)	III	Insecticide for the control of insect pest in vegetables and fruit crops	Limited,

68	Fendona 5SC	FRE/1498/00808G November 2014	Alpha-cypermethrin (50g/kg)	III	Insecticide for Cama Agro public health Consult,
60	E : 41:	EDE/1/02/10/20	F : (1: (500/)	***	purposes Accra.
69		FRE/1602/1042G August 2016	Fenitrothion (50%)	III	Insecticide for the Agrimat Ltd., control of chewing, Madina boring and sucking insects in tropical fruits, vegetables and cereals
70	Ficam VC 80WP	FRE/16183/1030G August 2016	Bendiocarb (80%)	II	Insecticide for RMG Ltd., public health Accra purposes
71	Fipro 50EC	FRE/1608/1012G August 2016	Fipronil (500g/l)	II	Insecticide for the Dizengoff control of insect(Ghana) pests in vegetables Limited, and cereals Accra

		Registration No. Date of Issue		Hazard Class		Local Distributor
72	Frankofen 20EC	FRE/1539/00943G December 2015	Fenvalerate (200g/l)	II	Insecticide for the control of insect pests in vegetables	Limited,
73	Furadan 3G	FRE/1505/00907R August 2015	Carbofuran (3%)	II	Insecticide for the control of insect pests in rice, vegetables and oil palm	Tema
74	Galil 300SC	FRE/16100/00999G August 2016	Imidacloprid (250g/l) + Bifenthrin (50g/l)	II	Insecticide for the control of mirids in cocoa	
75	Golan 20SL	FRE/1608/1013G August 2016	Acetamiprid (200g/l)	II	Insecticide for the control of insect pests in vegetables, citrus, cotton, coffee and maize	(Ghana) Limited,
76	Goliath Gel	FRE/1598/00879G August 2015	Fipronil (0.05%)	III	and crawling	Cama Agro Consulting Limited, Accra
77	Hercules 50SC	FRE/14104/00721G October 2014	Fipronil (50g/l)	II	public health	Agrimat Limited, Madina, Accra

78	Hercules Extra 20SC	FRE/14104/00722G October 2014	Fipronil (200g/l)	II	Insecticide for Agrimat public health Limited, purposes Madina, Accra
79	Impact 25EC	FRE/15142/00845G June 2015	Lambda-cyhalothrin (2.5%)	II	Insecticide for the Vista 2000 control of armyLimited, worms in pepper Accra and soybeans
80	Inesfly Body Repellant	FRE/15143/00831G August 2015	Pyrethrum extracts 1.2% + Piperonyl butoxide 0.3% + Ethanol 7.5%)		Insecticide for Inesfly Africa repelling Ltd., Accra mosquitoes
81	Inesfly EM House IGR NG	FRE/15143/00832G June 2015	D-Allethrin (1.0%) + Alpha- cypermethrin (0.7%) + Pyriproxifen (0.01%)		Insecticide for the Inesfly Africa control of insectLtd., Accra pest in field crops and for public health purposes
82	Inesfly EM House IGR NO Paint	FRE/15143/00833G August 2015	D-Allethrin (1.0%) + Alpha- cypermethrin (0.7%) + Pyriproxifen (0.01%)		Insecticide/ Inesfly Africa Miticide paint for Limited, the control of Accra mosquitoes and other household pests
83	Inesfly EM House 5A IGR	FRE/14104/00716G October 2014	Chlorpyrifos (3%) + Pyriproxyfen (0.063%)	IV	Insecticide for the Inesfly Africa control of insect Limited pests in mango, Tema. pawpaw, citrus and vegetables

			0	Concentration of Active Ingredient			cal stributor
84	I	nespalm	FRE/14104/00718G	Deltamethrin (0.5%)	IV	Insecticide for the Ine	sfly Africa
			October 2014	+ excipients q.s.p. (100%)		control of leafLim miners oil palmTen weevil, brown stripped rhinoceros	nited
85			FRE/1655/00961G January 2016	Imidacloprid (350g/kg) + Thiram (100g/kg)		Insecticide for the Lou control of aphids, Cor leafhoppers, other Gha insect pest and Ten fungal diseases	mmodities, ana Ltd,
86			FRE/1608/1015G August 2016	Fipronil (0.05%)		Insecticide for the Diz control of Gha cockroaches	_

87		FRE/1505/00909G August 2015	(400g/l) + Lambda- cyhalothrin (15g/l)		Insecticide for the Chemico control of scale and Limited, borers in cereals, Tema vegetables and for public health purposes
00	EC	FRE/1455/00736G October 2014	Acetamiprid (20g/l) + Lambda- cyhalothrin (16g/l)		Insecticide for the Louis Dreyfus control of insect Commodities, pests in vegetables Ghana Ltd, Tema
89	K-Othrine 250WG	FRE/16183/1031G August 2016	Deltamethrin (250g/kg)	II	Insecticide for RMG Ghana public health Limited, purposes Accra
90	Kilsect 2.5EC	FRE/1425/00775G November 2014	Lambda-cyhalothrin (25g/l)	II	Insecticide for the Bentronic control of insect Productions, pests in vegetables Kumasi
91	Lambad 2.5 EC	FRE/1581/00885G August 2015	Lambda-cyhalothrin (25g/l)	III	Insecticide for the Badu control of insectKaakyire pests in cereals and Agrochemical vegetables Co. Ltd., Kumasi
92		FRE/1599/00842G December 2015	Lambda-cyhalothrin (2.5%)	II	Insecticide for use Rainbow on vegetables and AgroSciences horticulture Company Limited, Tema
93	Lambda Super 2.5EC	FRE/1543/00868G June 2015	Lambda-cyhalothrin (25g/l)	II	Insecticide for the Kumark control of insect Company pests in vegetables Limited, and pulses Kumasi
94	Lambdacot EC	FRE/1458/00788G November 2014	Lambda-cyhalothrin (25g/l)	II	Insecticide for the Afcott Ghana control of insect Limited, pests in vegetables Accra and pulses

	11 auc	0		Hazard Class		Local Distributor
95	Lambate	February 2017	Dimethoate (300g/l) + Lambda- cyhalothrin (15g/l)		Insecticide for the control of aphids, thrips, planthoppers, whiteflies in cowpea, soybean, cotton, maize,	Agrotec Ltd., Kumasi

					sorghum, millet, melons and yams
96	Levo 2.4SL	FRE/1608/1016G August 2016	Oxymatrin (2.4%)	III	Insecticide for the Dizengoff control of insect Ghana Ltd, pest in vegetables Accra and fruit crops
97	Lionguard EC	FRE/16145/1036G August 2016	Dimethoate (25%) + Cypermethrin (3%)	·II	Insecticide for the Jubaili control of aphids, Agrotec Ltd., mealy bugs and Kumasi whiteflies in vegetables
98	Lufu 150SC	FRE/16192/1077G October 2016	Thiamethoxam (100g/l) + Deltamethrin (50g/l)	II	Insecticide for the Agrateam control of capsids Ghana Ltd, in cocoa Accra
99	Master 2.5EC	FRE/1422/00801G November 2014	Lambda-cyhalothrin (25g/l)	II	Insecticide for the Annoh & Sons control of insect Enterprise, pests in vegetables Accra
100	Mectin 1.8EC	FRE/1608/1014G August 2016	Abamectin (18g/l)	II	Insecticide for the Dizengoff control of Ghana Ltd, leafminers, Accra spidermites, caterpillars and thrips in citrus, cotton, coffee, vegetables and maize
101	Methoate 40EC	FRE/1425/00778G November 2014	Dimethoate (400g/l)	II	Insecticide for the Bentronics control of sucking, Productions, biting insects and Kumasi spider mites
102	Miricon EC	FRE/1614/1049G September 2016	Pyrethrum (12g/l) + Deltamethrin (6g/l)	·II	Insecticide for the Afropa control of mirids in (Ghana) Ltd., cocoa Accra
103	Nomax 150SC	FRE/1698/1034G August 2016	Alpha-cypermethrin (75g/l) + Teflubenzuron (75g/l)	II	Insecticide for the Cama Agro control of mirids in Consulting cocoa (CAC) Ltd., Accra
104	Okumakat e SC	FRE/1635/1076G October 2016	Thiamethoxam (200g/l)	II	Insecticide for the K. Badu Agro control of capsid Chemicals bugs in cocoa Kumasi
105	Pawa 2.5EC	FRE/1505/00910G August 2015	Lambda-cyhalothrin (25g/l)	II	Insecticide for the Chemico Ltd, control of insect Tema pests in vegetables

	No Trade Name	Registration No. Date of Issue		Hazard Class	Uses	Local Distributor
106	Perfecto 175SC	FRE/1410/00803G November 2014	Imidacloprid (12.2%)+ lambda cyhalothrin (5.0%)	II	Insecticide for the control of insect pests of vegetables and cereals	Accra
107	Phostoxin T	FRE/16185/1020R August 2016	Aluminium Phosphide (56%)	Ib	Insecticide for the control of insect pests in stored grains	
108	Protect 1.9EC	FRE/1608/1017G August 2016	Emamectin benzoate (1.9%)	III	,	_
109	Punto SL	FRE/1565/00853G August 2015	Imidacloprid (200g/l)	II	Insecticide for the control of aphids and whiteflies in egg-plant, tomatoes and sweetpotatoes	AgroSciences Company Limited,
110	Pyrical 5G	FRE/1606/00955G January 2016	Chlorpyrifos-ethyl (50g/kg)	II	Insecticide for the control of insect pests in vegetables	Company Ltd,
111	Pyrical 480EC	FRE/1406/00744G November 2014	Chlorpyrifos-ethyl (480g/l)	II	Insecticide for the control of insect pests in pineapples	Co. Ltd.,
112	Pyrinex 48EC	FRE/14100/00763G November 2014	Chlorpyrifos-ethyl (480g/l)	П	Insecticide for the control of insect pests in vegetables and for public health purposes	Africa Ltd., Accra
113	Pyrinex Quick 256EC	FRE/16100/00993G August 2016	Chlorpyrifos (250g/l) + Deltamethrin (6g/l)	II	Insecticide for the control of insect pests in vegetables and for public health purposes	Africa Ltd., Accra
114		FRE/1565/00854G August 2015	Dimethoate (300g/l) + Lambda- cyhalothrin (15g/l)		Insecticide for the control of insect pests in vegetables	AgroSciences
115		FRE/1565/00825R June 2015	Aluminium Phosphide (57%)	Ib		Rainbow AgroSciences Company Limited, Accra

116	Responsar	FRE/1461/00821G	Cyfluthrin (50g/l)	II	Insecticide for the	The Huge
	EW	December 2014			control of flying	Ltd., Accra
					and crawling	Newtown
					insects	

	oTrade Name	Registration No. Date of Issue		Hazard Class	Uses	Local Distributor
117	Rimon 10EC	FRE/14100/00764G November 2014	Novaluron (100g/l)	III	Insecticide for the control of insect pests in cabbage, tomatoes and pepper	Africa Ltd., Accra
118	Rocky Super 2.5EC	FRE/15165/00888G August 2015	Lambda-cyhalothrin (2.5%)	II	Insecticide for the control of insect pests in pulses and vegetables	Ltd., Kumasi
119	Sanitox 20EC	FRE/1422/00799G November 2014	Fenvalerate (200g/l)	II	Insecticide for the control of insect pests in vegetables and cowpea	Sons, Accra
120	Seed Shield	FRE/1657/1069G September 2016	Imidacloprid (350g/l)	III		Sunshine
121	Siege Pro	FRE/1498/00737G October 2014	Hydramethylon (0.73%)	II		Cama Agro, Consult, Accra
122	Simida 2.5EC	FRE/1530/00826/G December 2015	Lambda-cyhalothrin (25%)	II	Insecticide for the control of insect pests in vegetables, cereals, fruits and sugarcane	Enterprise, Kumasi
123	Sinoban EC	FRE/1422/00800G November 2014	Chlorpyrifos-ethyl (480g/l)	II	Insecticide for the control of insect pests in vegetables	
124	Spike 30SC	FRE/1608/1011G August 2016	Thiamethoxam (30g/l)	III	Insecticide for the control of insect pests in vegetables and cereals	Ghana

125	1		Methyl Eugenol (5ml/block) + Malathion (1ml/block)	-	Insecticide for the Splendid Agro control of Products, New Batrocera spp. in Pokuase fruits
126		FRE/1655/00962G January 2016	Lambda-cyhalothrin (2.5%)		Insecticide for the Louis Dreyfus control of aphids, Commodities bollworms and Ghana Ltd, diamondback moth Tema in cereals, vegetables and sugarcane

No ·	Trade Name	Registration No. / Date of Issue		Hazard Class		Local Distributor
127	Sumico 20EC	FRE/1543/00865G August 2015	Fenvalerate (200g/l)	II		Company Limited, Kumasi
128	Sumitex 40EC	FRE/1543/00871G June 2015	Dimethoate (400g/l)	II	Insecticide for the control of mealy bugs, mites, thrips, and borer larvae in vegetables and pineapples	Company Limited, Kumasi
129	Super Tiger 2.5EC	FRE/1467/00792G November 2014	Lambda-cyhalothrin (25g/l)	III	Insecticide for the control of insect pests in vegetables	Chemicals,
130	Suncombi 30EC	FRE/1657/1068G September 2016	Fenitrothion (25%) + Fenvalerate (5%)	II		Sunshine Agric
131	Sun- Docarb SC	FRE/1657/10065G August 2015	Indoxacarb (150g/l)	II	Insecticide for the control of bollworms,	Wynca Sunshine Agric. Products &Trading Co.
132	Sunhalothr in 2.5EC	FRE/1757/1102G February 2017	Lambda-cyhalothrin (25%)	II	Insecticide for the control of insect pests in vegetables	Sunshine

					and pulses	&Trading Co., Ltd, Accra
133	Sun- Lambda EC	FRE/1657/1064GG September 2016	Lambda-cyhalothrin (2.5g/l)	II	Insecticide for a control diamondback mo and cott bollworms cabbage and cotto	of Sunshine oth Agric. con Products in & Trading Co.
134	Sun- Thiame WDG	FRE/1657/1063G September 2016	Thiamethoxam (25%)	II	Insecticide for t	theWynca antSunshine idsAgric.
135	Sunpyram 20WG	FRE/1657/1100G February 2017	Nitenpyram (20%)	II	Insecticide for the control of external parasites livestock	
136	Sunpyrifos 48 EC	FRE/1657/1006G September 2016	Chlorpyrifos ethy (480g/l)	III	Insecticide for to control of insection pests in crops	,

	Trade Name	Registration No. / Date of Issue		Hazard Class		Local Distributor
137	ULV 900IC	FRE/1614/1048G September 2016	Pyrethrum (50%) + Deltamethrin (0.674%)	II	Insecticide for the control of flying and crawling insects in cocoa, stored produce and public health	(Ghana) Ltd., Accra
138	Vectobac G	FRE/1402/00741G October 2014	Bacillus thuringiensis, serotype H-14, 3000 Units/mg	IV	Insecticide for the control of mosquito larvae	Agrimat Limited, Accra
139	VectoBac 12AS	FRE/1402/00742G October 2014	Bacillus thuringiensis, serotype H-14, 3000 Units/mg	IV	Insecticide for the control of mosquito larvae	Agrimat Limited, Accra
140	VectoBac WDG	FRE/1480/00810G December 2014	Bacillus thuringiensis subsp. Israelensis 3000 ITU/mg	IV	Insecticide for the control of mosquito larvae	Challux Limited, Accra
141	Vectolex WG	FRE/1402/00740G October 2014	Bacillus sphaericus (3000 ITU/mg)	IV	Insecticide for the control of larvae of	Agrimat Limited,

					mosquitoes Accra
142	Verate 200 EC	FRE/1699/00976G March 2016	Fenvalerate (200g/l)	П	Insecticide for the Rainbow control of AgroScience stalkborer, s Co. Ltd., bollworms, cotton stainers in cotton, maize and sorghum
143	Vertigo 100EC	FRE/15142/00846G June 2015	Cypermethrin (100g/l)	III	Insecticide for the Vista 2000 control of army Limited, worms, thrips, Accra whiteflies and fruit sucking bugs in onion and soybean
144	Vigilant 25EC	FRE/1410/00766G November 2014	Bifenthrin (25g/l)	III	Insecticide for the Reiss & Co control of (Ghana), bollworms, jassids, Accra aphids, whiteflies, mites, hoppers in cotton and mango
145	Viper 46EC	FRE/1506/00932/G December 2015	Acetamiprid (16g/l) + Indoxacarb (30g/l)		Insecticide for the Calli Ghana control of Ltd., Tema lepidoptera, sucking and bitting insects
146	Wreko 2.5EC	FRE/1623/00987G March 2016	Lambda- cyhalothrin(25g/l)	II	Insecticide for the Thomhcof control of insect Company pests in vegetables Limited, Kumasi
147	Zap 2.5EC	FRE/1726/1115G February 2017	Lambda-cyhalothrin (2.5%)	II	Insecticide for the The Candel control of insect Company pests in vegetables Limited, Accra

(A) Fully Registered Pesticides (FRE)

(A2) Fungicides

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas	Uses	Local Distributor
148	Acticide EPW	FRE/1520/00 950G December 2015	Diuron (20%) + Carbendazim (9%) + 2- octyl-2H-isothiazol-3- one (2.8%)	III	Fungal and algal paint preservative	

149	Amistar Top 325SC	FRE/16185/1 022G August 2016	Azoxystrobin (200g/l) + Difenoconazole (125g/l)	III	Systemic fungicide for the control of early blight, late blight, powdery mildew, leaf spot, anthracnose and rust in beans, pea, tomatoes and pepper	RMG Ghana Limited, Accra
150	Athelete 80WP	FRE/1655/00 966G January 2016	Fosetyl-aluminium (800g/kg)	III	Fungicide for the control of mildew and Phytophtora sp., Pythium plasmopara and Bremia sp. in vegetables, fruits and pineapples	Louis Dreyfus Commodities Ghana Ltd, Tema
151	Agro-Comet 72WP	FRE/1410/00 802G November 2014	Metalaxyl (12%) + Copper (I) oxide (60%)	III	Fungicide for the control of fungal diseases on cocoa	Reiss &Co Ghana Limited, Accra
152	Banjo Forte 400SC	FRE/16100/1 080G November 2016	Fluazinam (200g/l) + Dimethorph (200g/l)	III	Fungicide for the control of <i>Phytophthora megakarya</i> in cocoa	Adama West Africa Ltd., Accra
153	Bartoline	FRE/1631/10 09G August 2016	Dichlofuanid (39.6g/l)	IV	Fungicide/algaeci de for the preservation of wood	• ′
154	Benco 80 WP	FRE/1425/00 783G November 2014	Mancozeb (800g/kg)	III	Fungicide for control of leaf spots, mildew, leaf blight and in vegetables, fruits and ornamentals	Bentronic Productions, Kumasi
155	Bosun 300SC	FRE/15139/0 0891G August 2015	Boscalid (20%) + Kresoxim-methyl (10%)	III	Fungicide for the control of powdery mildew, anthracnose, mould, rust and leaf spots in vegetables and fruits	Jingbo Agrochemicals Tech. Gh. Co., Ltd., Accra.

No.	Trade Name
156	Calthio Mix 485WS
157	Callet 50WP
158	Calliette 80WP
159	Caldo Bordeles Valles 20WP
160	Callis 400OL
161	Carbendazim 50WP
162	Conti-Zeb
163	Cosavet DF
164	Cuprozin 35WP
165	Curenox 50WP
166	Damazeb 80WP

No ·	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas s	Uses	Local Distributor
167	Dithane M45 WP	FRE/1505/00 902G August 2015	Mancozeb (800g/kg)	III	Fungicide for the control of leaf spots, mildew, leaf blight and scab of fruits and vegetables	Chemico Limited, Tema
168	Fantic Plus 69WP	FRE/1606/00 957G January 2016	Cuprous oxide (60%) + Benalaxyl-M (9%)	III	Fungicide for the control of <i>Phytophtora megakarya</i> in cocoa	Calli Ghana Co. Ltd., Tema
169	Foko 80WP	FRE/1623/00 991G March 2016	Mancozeb (800g/kg)	III	Fungicide for the control of diseases in vegetables	Thomas Fosu Enterprise, Kumasi

170	Foko Super 80WP	FRE/1623/00 991G March 2016	Mancozeb (800g/kg)	III	Fungicide for the control of diseases in vegetables	Thomas Fosu Enterprise, Accra
171	Folicur 250EW	FRE/16183/1 028G August 2016	Tebuconazole (250g/l)	II	Fungicide for the control of black and yellow sigatoka in plantain and banana	RMG Ghana Limited, Accra
172	Folpan 50WP	FRE/14100/0 0760G November 2014	Folpet (500g/l)	III	Fungicide for the control of diseases in vegetables	Adama West Africa Ltd., Accra
173	Fungikill 50WP	FRE/1505/00 926G October 2015	Copper (35%) + Metalaxyl (15%)	III	Fungicide for the control of <i>P</i> . palmivora and <i>P</i> . megakarya in cocoa	Chemico Ltd, Tema
174	Funguran OH-50WP	FRE/1608/10 88G December 2016	Copper Hydroxide (77%)	III	Fungicide for the control of <i>Phytophtora sp.</i> in cocoa	Dizengoff Ghana Limited, Accra.
175	Goldazim 500SC	FRE/1416/00 773G November 2014	Carbendazim (500g/l)	III	Systemic fungicide for the control of diseases in fruits and vegetables	Kurama Company Limited
176	Impulse 800EC	FRE/16183/1 029G August 2016	Spiroxamine (800g/l)	II	Fungicide for the control of black and yellow sigatoka in plantain and banana	RMG Ghana Limited, Accra
177	Ivory 80WP	FRE/1606/00 530G January 2016	Mancozeb (800g/kg)	III	Fungicide for the control of diseases in vegetables and fruits	Calli Ghana Company Ltd., Tema
178	Kentan 40 WG	FRE/1706/11 13G February 2017	Copper Hydroxide (400g/kg)	III	Fungicide for the control of black pod disease in cocoa	Calli Ghana Company Limited, Tema

	N 0	Trade Name		Concentration of Active Ingredient	Haz ard Clas	Uses	Local Distributor
1	79	Kilazeb 80WP	FRE/1543/00 877G June 2015	Mancozeb (800g/kg)	III	Fungicide for the control of leaf spots, mildew, leaf blight and scab in vegetables and fruits	Company Limited,

180	Kocide 2000 WP	FRE/1406/00 798G December 2014	Cupric hydroxide (53.8%)	III	Fungicide for the control diseases in cocoa	Calli Ghana Limited, Accra
181	Limaneb 80WP	FRE/1698/11 23G December 2016	Maneb (80%)	III	Fungicide for the control of powdery mildew and leaf spot	J. K. Duku Enterprise, Kumasi
182	Mancozan Super WP	FRE/1655/00 967G January 2016	Mancozeb (640g/kg) + Metalaxyl (80g/kg)	III	Fungicide for the control of potato blight, leafspot and scab in vegetables	Louis Dreyfus Commodities , Ghana Ltd, Tema
183	Mandazim WP	FRE/17145/1 094G February 2017	Mancozeb (63%) + Carbendazim (12.5%)	III	Fungicide for the control of late leaf spot and peanut rust in groundnuts	Jubaili Agrotec Ltd., Kumasi
184	Manlax	FRE/1565/00 857G June 2015	Mancozeb (64%) + Metalaxy (8%)	III	Fungicide for the control of downy mildew, late and early blight in lettuce, onions and sweetpotatoes	Rainbow AgroSciences Company Limited, Accra
185	Merpan 50WP	FRE/14100/0 0761G November 2014	Captan (500g/kg)	III	Fungicide for the control of diseases in fruits, and vegetables	Adama West Africa Ltd., Accra
186	Metalm 72WP	FRE/1416/00 774G November 2014	Cuprous oxide (60%) + Metalaxyl (12%)	III	Fungicide for the control of black pod disease in cocoa	Kurama Company Limited, Accra
187	Nativo 300SC	FRE/16183/1 027G August 2016	Terbuconazole (200g/l) + Trifloxystrobin (100g/l)	III	Fungicide for the control of diseases in vegetables	RMG Ghana, limited, Accra
188	Ortiva Top	FRE/1706/11 12G February 2017	Azoxystrobin (200g/l) + Difenoconazole (125g/l)	III	Fungicide for control of leaf spot and <i>Anthracnose</i> of Tomato	Calli Ghana Ltd., Accra
189	Ortiva 250SC	FRE/16185/1 023G August 2016	Azoxystrobin (250g/l)	III	Fungicide for the control of anthracnose disease in vegetables	RMG Ghana Limited, Accra

190	Rainmancoz	FRE/1699/10	Mancozeb (800g/kg)	III	Fungicide for the	Rainbow
	80WP	06G			control of leaf	Agrosciences
		August 2016			spots, mildew and	Company
					leaf blight in	Limited,
					vegetables, fruits,	Tema
					and ornamentals	

No .	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas s	Uses	Local Distributor
191	Rainprozol 250EC	FRE/1699/00 983G March 2016	Propiconazole (250g/l)	control of fungal diseases in rice and pineapple		Rainbow Agrosciences Company Limited, Tema
192	Raintop-M 70WP	FRE/1699/10 78G October 2016	Thiophanate methyl (700g/kg)	III	Fungicide for the control of leaf spots, mildew, leaf blight and scab in vegetables	Rainbow AgroSciences Company Limited, Accra
193	Shavit F 715WP	FRE/14100/0 0759G November 2014	Folpet (700g/kg) + Triadimenol (1.5g/kg)	III	Fungicide for the control of diseases in vegetables	Adama West Africa Ltd., Accra
194	Sphinx star 480WDG	FRE/14100/0 0818G December 2014	Dimethomorph (80g/l) + Chlorothalonil (400g/l)	III	Fungicide for the control of diseases in vegetables	Adama West Africa Ltd, Accra
195	Sulphur 80WP	FRE/1602/10 46G August 2016	Sulphur (80%)	III	Fungicide for the control of fungal diseases in ornamentals	Agrimat Limited, Madina
196	Sun-Anil SC	FRE/1657/10 73G September 2016	Pyrimethanil (50g/l)	III	Contact fungicide for the control of downy mildew of tomatoes and cucumber	Wynca Sunshine Agric. Products &Trading Co. Ltd., Accra.

197	Suncozeb 80WP	FRE/1657/10 72G September 2016	Mancozeb (800kg/kg)	III	Fungicide for the control of leaf spots, mildew, leaf blight and scab in vegetables	Wynca Sunshine Agric Products &Trading Co Ltd, Accra
198	Sun-Lonil WP	FRE/1657/10 99G February 2016	Chlorothalonil (75%)	II	Fungicide for the control of downy mildew and early blight of cucumber and tomatoes	Wynca Sunshine Agric. Products &Trading Co. Ltd., Accra.
199	Sun-Vege WP	FRE/1657/10 71G November 2016	Dimethorph (50%)	II	Fungicide for the control of downy mildew of Cucumber	Wynca Sunshine Agric. Products &Trading Co. Ltd., Accra.
200	Tilt	FRE/1406/00 745G November 2014	Propiconazole (250g/l)	III	Fungicide for the control of fungal diseases in banana	Calli Ghana Company Limited, Tema
201	Тор Сор	FRE/1505/00 903G August 2015	Sulphur (50%) + Copper (8%)	III	Fungicide / miticide for the control of diseases in vegetables	Chemico Limited, Tema
202	Trimangol 80WP	FRE/1505/00 901G August 2015	Maneb (800g/kg)	III	Fungicide for the control of leaf spot, downy mildew, leaf blight and scab of cereals, vegetables	-

No.	Trade Name	O	Concentration Active Ingredient	of	Haz ard Clas s	Uses			Local Distribu	ıtor
203	Vamos	FRE/16100/1	Fluazinam (500g/l)	·	III	Fungicide	for	the	Adama	West

	500SC	081G November 2016			control of Phytophthora megakarya in cocoa	Africa Ltd., Accra
204	Volley 88OL	FRE/1598/00 880G August 2015	Fenpropimorph (880g/l)	III	Fungicide for the control of Mycosphaerella musicola and Mycosphaerella fijiensis in banana	Cama Agro Consulting Limited, Accra
205	Xanbac D EC	FRE/1608/10 87G December 2016	Dichlorophen (200g/l)	III	Contact fungicide/algaecide /bactericide for the control of root rot, angular leafspot, bacterial spot and damping off disease in green pepper, cotton and beans	Dizengoff Ghana Limited, Accra
206	Zeb-care 80WP	FRE/17145/1 093G February 2017	Mancozeb (80%)	III	Fungicide for the control of fungal diseases in fruits and vegetables	Jubaili Agrotec Ltd., Kumasi

(A) Fully Registered Pesticides (FRE)

(A3) Herbicides

No.	Trade Name	Registration	Concentration	Haza	Uses	Local
		No. / Date of	of Active	rd		Distributor
		Issue	Ingredient	Class		
207	2,4-D Super	FRE/1467/00793	2,4-D Amine	II	Herbicide for the	Jakess
	Herb	G	(720g/l)		control of broadleaf	Agrochemical
		November 2014			weeds	Kumasi
208	Aboextra 72SL	FRE/15113/0092	2,4-D Amine	III	Selective herbicide	Aboboyaa
		1G	Salts (720g/l)		for control of	Enterprise
		September 2015			broadleaf weeds in	Limited,
					rice, maize,	Kumasi
					sorghum, millet and	
					sugarcane	
209	Adom 48SL	FRE/1467/00791	Glyphosate	III	Herbicide for the	Jakess Agro
		G	(410g/l)		control of grasses	Company
		November 2014			and broadleaf	Ltd, Kumasi
					weeds in cereals	
					and vegetables	
210	Adwuma Wura	FRE/1543/00863	Glyphosate	III	Herbicide for the	Kumark

	480SL	G August 2015	(480g/l)		control of annual, perennial grasses and broadleaf weeds in cereals and vegetables	Company Limited, Kumasi
211	Adwumaye 41 SL	FRE/1682/1128 G December 2016	Glyphosate (410 g/l)	III	Herbicide for the control of broadleaf weeds and grasses	Cropstar Enterprise, Kumasi
212	Adwuma Wura 75.7WSG	FRE/1543/00864 G August 2015	Glyphosate (75.7%)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in cereals and vegetables	Kumark Company Limited, Kumasi
213	Afuo Wura 48SL	FRE/15108/0085 1G June 2015	Glyphosate (480g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in cereals and vegetables	WAAF Agro Limited, Techiman
214	Agilox 170 EC	FRE/16100/0099 5G August 2016	Propaquizafop (50g/l) + Oxyfluorfen (120g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in onion	Adama West Africa Ltd., Accra
215	Agil 100EC	FRE/14100/0075 8G November 2014	Propaquizafop (100g/l)	III	Herbicide for the control of grasses	Adama West Africa Ltd., Accra
216	Agristomp 500E	FRE/1602/1047 G August 2016	Pendimethalin (500g/l)	III	Pre-emergent herbicide for the control of weeds in maize, cotton, rice and soybean	Agrimat Limited, Madina
217	Alligator 400EC	FRE/1455/00728 G October 2014	Pendimethalin (400g/l)	III	Herbicide for the control of grasses in rice	Louis Dreyfus Commodities Ghana Ltd, Tema
218	Amazone 10WP	FRE/1506/00933 G December 2015	Pyrazosulfuron ethyl (10%)	III	Herbicide for the control of weeds in rice	Calli Ghana Co., Ltd, Tema

No.	Trade Name	Registration	Concentration	Haza	Uses	Local
		No. / Date of	of Active	rd		Distributor
		Issue	Ingredient	Class		

	Γ	G	(500 %)	1		T
		G August 2015	(720g/l)		for the control of broadleaf weeds in cereals and sugarcane	Limited, Tema
220	Aminoforce 72SL	FRE/15145/0082 7G June 2015	2,4-D Amine (720g/l)	II	Herbicide for the control of broadleaf weeds and sedges in cereals and tree crops	Jubaili Agrote Ltd, Accra
221	Aminespray 720SL	FRE/1699/1005 G August 2016	2,4-D Amine (720g/l)	II	Herbicide for the control of annual, perennial grasses and broadleaf weeds in cereals, sugarcane and citrus	Rainbow AgroSciences Co. Ltd., Tema
222	Arrow 75WDG	FRE/1608/1018 G August 2016	Nicosulfuron (75%)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Dizengoff Ghana Ltd Accra
223	Arsenal Gen 2SL	FRE/1498/805G August 2014	Imazapyr (250g/l)	II	Selective post emergence herbicide for the control of grasses in cereals	Cama Agree Consultancy Accra.
224	Basta 200SL	FRE/16183/1000 G August 2016	Glufosinate- ammonium (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses in banana	RMG Ghana Limited, Accra
225	Bastnate 200 SL	FRE/1699/00977 G March 2016	Glufosinate- ammonium (200g/l)	II	Herbicide for the control of annual, perennial broadleaf weeds in banana, plantain, mango and pineapple	Rainbow AgroSciences Company Limited, Tema
226	Benaxone Super SL	FRE/1425/00780 R November 2014	Paraquat (276g/l)	II	Herbicide for the control of annual, perennial grasses and broadleaf weeds	Bentronic Productions, Kumasi
227	Baccara 435 EC	FRE/1506/00934 G December 2015	Propanil (260g/l) + 2,4 D Amine (175g/l)	II	Herbicide for the control of broadleaf weeds and grasses in rice	Calli Ghan Company Ltd Tema
228	Basagran 480 SL	FRE/1498/00806 G November 2014	Bentazon (480g/l)	II	Herbicide for the control of broadleaf weeds in beans, groundnut and maize	Cama Agra Consultancy, Accra.
229	Best Up 480SL	FRE/15142/0085	Glyphosate	III	Herbicide for the	Vista 200

		0G	(480g/l)		control of annual,	Limited,
		August 2015	1		perennial broadleaf	Accra
			1		weeds and grasses	1
		'	1		in maize, rubber, oil	
		<u> </u> '	<u> </u>	<u> </u>	palm and rice	
230	Bextra 72SL	FRE/1425/0022	2,4 D Amine	II	Selective herbicide	Bentronics
		G	(720g/l)		for the control of	Productions,
		October, 2014	1		broadleaf weeds in	Kumasi
		'	1		maize, rice and	
		<u> </u> '	<u> </u>		sorghum	
231	Bisonrice 400SC	FRE/1565/00839	Bispyribac-	III	Selective herbicide	Rainbow
		G	sodium (400g/l)		for the control of	AgroSciences
		June 2015	1		grasses and	Company
			1		broadleaf weeds in	Limited, Accra
		'	1		rice	
						1

No.	Trada Nama	Dogistustian	Concentration	Цело	Ugag	
NO.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
232	Bonamine 720EC	FRE/15149/0093 5G December 2015	2,4-D Amine (720 g/l)	II	Herbicide for the control of broadleaf weeds in maize and rice	Bon Agro Company Limited, Kumas
233	Bonsate 480SL	FRE/15149/0093 6G December 2015	Glyphosate (480g/l)	III	Herbicide for the control of grasses and broadleaf weeds	Bon Agro Company Limited, Kumas
234	Butaforce EC	FRE/15145/0082 8G June 2015	Butachlor (500g/l)	III	Pre-emergent herbicide for the control of grasses and broadleaf weeds in rice, soybean, cotton and vegetables	Jubaili Agrotec Ltd., Accra
235	Butaplast EC	FRE/1543/00876 G August 2015	Butachlor (50%)	III	Pre-emergent herbicide for the control of annual, perennial grasses and broadleaf weeds in rice, soybean, cotton and vegetables	Kumark Company Limited, Kumasi
236	Calliherbe 720SL	FRE/1606/00956 G January 2016	2,4-D Amine (720g/l)	II	Selective herbicide for the control of broadleaf weeds in cereals and tree crops	Calli Ghana Co. Ltd, Tema
237	Caritek 80WP	FRE/1699/1004 G	Diuron	II	Herbicide for the control of annual,	Rainbow AgroSciences

		August 2016	(800g/kg)		perennial grasses and broadleaf weeds in pineapple	Co. Ltd., Tema
238	Chemopax 500 SC	FRE/1705/1126 G February 2017	Ametryn (485g/l) + Trazine (15g/l)	II	Herbicide for the control of annual, perennial grasses and broadleaf weeds	Chemico Limited, Tema
239	Chemosate 360SL	FRE/1405/00687 G March 2015	Glyphosate (360g/l)	III	Herbicide for the control of annual and perennial weeds	Chemico Limited, Tema
240	Chemovar 80WP	FRE/1505/00895 G August 2015	Bromacil (800g/kg)	III	Herbicide for the control of grasses and broadleaf weeds in pineapples	Chemico Limited, Tema
241	Chemuron 80WP	FRE/1505/00896 G August 2015	Diuron (80%)	III	Herbicide for the control of grasses in pineapples, citrus and mangoes	Chemico Limited, Tema
242	Chemostorm 500EC	FRE/1705/1127 G February 2017	Pendimethalin (500g/l)	III	Pre-emergent herbicide for the control of weeds in cereals, cotton and soybean	Chemico Limited, Tema
243	Chemoxone SL	FRE/1505/00897 R August 2015	Paraquat dichloride (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses	Chemico Limited, Tema
244	Clearforce	FRE/14145/1037 G August 2016	Glyphosate (250g/l) + Diuron (250g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cotton, citrus, sugarcane, oil palm and rubber	Jubaili Agrote Ltd, Kumasi.

No.	Trade Name	Registration	Concentration	Haza	Uses	Local
		No. / Date of				Distributor
		Issue	Ingredient	Class		
245	Cleanspray 80SG	FRE/1699/00978	2,4-D Amine	II	Herbicide for the	Rainbow
		G	(960g/kg)		control of annual,	AgroSciences
		March 2016			perennial broadleaf	Company
					weeds and grasses	Limited, Tema
					in millet	
246	Condax WP	FRE/1678/00925	Bensulfuron-	III	Systemic herbicide	Five Continents
		G	methyl (30%)		for the control of	Accra
		October 2016			annual and	
					perennial broad	

_	1		I	T	T	
					leaved and sedges weeds in rice	
247	Corta 480EC	FRE/1655/00963 G January 2016	Trichlopyr (480g/l)	III	Selective herbicide for the control of broadleaf weeds in oil palm, rice and sugarcane	Louis Dreyfu Commodities Ghana Ltd Tema
248	Cut Out 100SC	FRE/16100/0099 6G August 2016	Bispyribac sodium (100g/l)	II	Herbicide for the control of annual, perennial grasses and broadleaf weeds in rice	Adama Wes Africa Ltd Accra
249	Delsate 41SL	FRE/1626/1053 G September 2016	Glyphosate (410g/l)	II	Herbicide for the control of grasses and broadleaf weeds in pineapple	The Cande Company Limited, Accra
250	Destroyer	FRE/1718/1125 G January 2017	Glyphosate (360g/l)	III	Herbicide for the control of annual and perennial weeds	Rhemaco Enterprise, Kumasi
251	Dinamic Plus 500EC	FRE/1606/1007 G August 2016	Amicarbazone (100g/l) + Propisochlor (400g/l)	III	Herbicide for the control of grasses broadleaf and sedges in arable crops	Calli Ghan Limited, Tema
252	Di-On WP	FRE/1543/00874 G August 2015	Diuron (80%)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in pineapples, citrus and mangoes	Kumark Company Limited, Kumasi
253	Diuron 80WP	FRE/1602/1044 G August 2016	Diuron (80%)	III	Herbicide for the control of grass weeds in cotton and sugarcane	Agrimat Limited, Madina
254	Diurex 80WDG	FRE/16100/0099 4G August 2016	Diuron (800g/kg)	II	Herbicide for the control of broadleaf weeds and grasses in sugarcane and cotton	Adama West Africa Ltd., Accra
255	Diutop 80WP	FRE/1626/1051 G September 2016	Diuron (80g/kg)	II	Herbicide for the control of grasses and broadleaf weeds in pineapple	The Candel Company Limited, Accra
256	Doubleforce	FRE/16145/1039 G August 2016	Diuron (350g/l) + Paraquat dichloride (150g/l)	II	Herbicide for the control of broadleaf weeds and grasses in field crops	Jubaili Agrotec Ltd. Kumasi
257	Eduodzi 480SL	FRE/1699/00971 G	Glyphosate (480g/l)	III	Herbicide for the control of annual,	Rainbow AgroSciences

		March 2016			perennial grasses and broadleaf weeds in vegetables	Co. Ltd., Tema
No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
258	Eduodzi 757 SG	FRE/1699/00970 G March 2016	Glyphosate (757g/kg)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in vegetables	Rainbow AgroSciences Co. Ltd., Tema
259	Eliminator Plus 150SL	FRE/1565/00841 R June 2015	Diquat dibromide (150g/l)	II	Herbicide for the control of broadleaf weeds and grasses	Rainbow AgroSciences Co., Limited Accra
260	Eliminator Plus 200SL	FRE/1565/00840 R June 2015	Diquat dibromide (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses	Rainbow AgroSciences Co, Limited Accra
261	Ervextra SC	FRE/1655/00964 G January 2016	2, 4-D Amine (720g/l)	III	Selective herbicide for the control of broadleaf weeds in rice, maize, oil palm, coconut, rubber and sugarcane	Louis Dreyfu Commodities, Ghana Ltd Tema
262	Fenfen 240EC	FRE/1699/00979 G March 2016	Oxyfluorfen (240g/l)	U	Herbicide for the control of annual, perennial broadleaf weeds and grasses in groundnut, fruit trees, onion and cotton	Rainbow AgroSciences Company Limited, Tema
263	ForceUp SL	FRE/15145/0082 9G August 2015	Glyphosate (41%)	III	Herbicide for the control of weeds in crops	Jubaili Agrote Ltd., Kumasi
264	Force Uron 50SC	FRE/15145/0094 2G December 2015	Diuron (50%)	III	Herbicide for the control of grasses in fruits and cotton	Jubaili Agrote Ltd, Kumasi
265	Force Uron 80WP	FRE/16145/1038 G September 2016	Diuron (80%)	III	Herbicide for the control of grasses in fruits and cotton	Jubaili Agrote Ltd, Kumasi
266	Franko-2, 4-D	FRE/1439/00797 G November 2014	2,4-D Amine salts (720g/l)	II	Herbicide for the control of broadleaf weeds and sedges	Frankatson Limited, Accra
267	Frankosate 41SL	FRE/1439/00794 G November 2014	Glyphosate (410g/l)	III	Herbicide for the control of broadleaf weeds, sedges and	Frankatson Limited, Accra

	1	T	T	1	T	T
					grasses	
268	Frankosulfuron	FRE/1539/00944 G December 2015	Nicosulfuron (40g/l)	III	Herbicide for the control of grasses in Maize	Frankatson Limited, Accra.
269	Gallant Super	FRE/1505/00898 G August 2015	Haloxyfop (108g/l)	III	Post emergence herbicide for the control of broadleaf weeds in vegetables	Chemico Limited, Tema
270	Garlon 4 EC	FRE/1505/00899 G August 2015	Triclopyr (480g/l)	III	Herbicide for use as tree killer and the control of broadleaf weeds	Chemico Limited, Tema
271	Glycel 41SL	FRE/1610/1001 G August 2016	Glyphosate (410g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Reiss and Co Ghana Ltd Accra
272	Glycot 41SL	FRE/1458/00789 G November 2014	Glyphosate (410g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cereals	Afcott Ghan Limited, Accra

			α			-
No.	Trade Name	Registration	Concentration	Haza	Uses	Local
		No. / Date of		rd		Distributor
		Issue	Ingredient	Class		
273	Glyfos 41SL	FRE/1402/0080	Glyphosate	III	Herbicide for the	Agrimat
		9G December	(410g/l)		control of annual,	Limited, Accra
		2014			perennial grasses	
					and broadleaf	
					weeds	
274	Glygold 41SL	FRE/1453/0076	Glyphosate	III	Herbicide for the	L'espoir
		8G	(410g/l)		control of broadleaf	Company
		November 2014			weeds and grasses	Limited Accra
275	Glyking 480 SL	FRE/1699/0097	Glyphosate	III	Herbicide for the	Rainbow
		5G	(480g/l)		control of grasses	AgroSciences
		March 2016			and broadleaf	Co. Ltd., Tema
					weeds	·
276	Glyphader	FRE/1455/0073	Glyphosate	III	Herbicide for the	Louis Dreyfus
	480SC	4G	(480g/l)		control of broadleaf	Commodities,
		October 2014	, , ,		weeds and grasses	Ghana Ltd,
					_	Tema
277	Glyphader 75SG	FRE/1455/0073	Glyphosate	III	Herbicide for the	Louis Dreyfus
		3G	(757g/kg)		control of grasses	Commodities
		October 2014			and broadleaf	Ghana. Ltd,
					weeds in cereals	Tema
					and vegetables	
278	Glyphogan	FRE/14100/008	Glyphosate	III	Herbicide for the	Adama West
	t .	1	l .		1	

	480SL	13G December 2014	(360g/l)		control of grasses and broadleaf weeds in cereals and vegetables	Africa Ltd., Accra
279	Glyphosate Technical	FRE/1557/0088 6G August 2015	Glyphosate Ammonium Salt (88 Min)	III	Herbicide for the control of broadleaf weeds and grasses in maize	Wynca Sunshine Agric Products &Trading, Accra
280	Glyphosate Technical	FRE/1557/0088 7G August 2015	Glyphosate Ammonium Salt (95 Min)	III	Herbicide for the control of broadleaf weeds and grasses in maize	Wynca Sunshine Agric Products &Trading, Accra
281	Glystar 41SL	FRE/1553/0089 4G August 2015	Glyphosate (41%)	III	Herbicide for the control of broadleaf weeds and grasses	Cropstar Enterprise, Kumasi
282	Gramoquat Super	FRE/1643/1082 R November 2016	Paraquat dichloride (200g/l)	II	Non-selective herbicide for the control of broadleaf weeds and grasses	Kumark Co. Ltd., Kumasi
283	Grammosharp Super 20SL	FRE/1682/1131 R December 2016	Paraquat dichloride (20%)	II	Non-selective broad-spectrum herbicide for the control of broadleaf weeds and grasses	Cropstar Enterprise, Kumasi
284	Guardforce OD	FRE/15145/009 41G December 2015	Nicosulfuron (4%)	III	Herbicide for the control of annual grass weeds	Jubaili Agrotec Ltd, Accra
285	Granite 240 SC	FRE/17185/110 9G February 2017	Penoxsulam (240 g/l)	U	Herbicide for the control of broadleaf weeds, grasses, and sedges in rice	Dow Chemical West Africa LLC Accra
286	Herbacut 72 SL	FRE/1682/1132 G December 2016	2,4-D Amine Salt (720g/l)	II	Herbicide for the control of grasses and broadleaf weeds and sedges.	Cropstar Enterprise, Adum-Kumasi
287	Herbaking 720SL	FRE/1699/0098 0G March 2016	2,4-D Amine (720g/l)	П	Herbicide for the control of broadleaf weeds and grasses in sorghum and maize	Rainbow AgroSciences Company Limited, Tema

No.	Trade Name	Registration	Concentration	Haza	Uses	Local
		No. / Date of	of Active	rd		Distributor
		Issue	Ingredient	Clas		
				S		

288	Herbextra 72SL	FRE/1543/0085 9G August 2015	2, 4-D Amine (720g/l)	II	Herbicide for the control of grasses in rice, sorghum and maize	Kumark Company Limited, Kumasi
289	Herbimais WG	FRE/1455/0073 0G October 2014	Atrazine (750g/kg) Nicosulfuron (40g/kg)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in maize	Louis Dreyfus Commodities Gh. Ltd, Tema
290	Hyvar X 80WP	FRE/1606/1008 G August 2016	Bromacil (800g/kg)	III	Pre-emergent herbicide for the control of weeds in pineapple	Calli Ghana Co Ltd, Tema
291	Kabaherb SL	FRE/1581/0088 4G August 2015	2,4-D Amine Salts (720g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in rice	Badu Kaakyire Agrochemical Co. Ltd., Kumasi
292	Kabasate 41SL	FRE/1581/0088 3G August 2015	Glyphosate (410g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in cereals and vegetables	Badu Kaakyire Agrochemical Co. Ltd., Kumasi
293	Kalach Extra 70SG	FRE/1406/0071 2G October 2014	Glyphosate (700g/kg)	III	Herbicide for the control of grasses and broadleaf weeds	Calli Ghana Company Limited, Tema
294	Kalach 360SL	FRE/1406/0071 1G October 2014	Glyphosate (360g/l)	III	Herbicide for the control of broadleaf weeds and grasses	Calli Ghana Company Limited, Tema
295	Kamazone	FRE/1635/1097 R October 2016	Paraquat dichloride (200g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds	K. Badu Agrochemicals, Kumasi
296	Kondem 41SL	FRE/1635/1075 G October 2016	Glyphosate (410g/l)	III	Herbicide for the control of broadleaf weeds and grasses	K. Badu Agro Chemicals Kumasi
297	Kwatriqua 20SL	FRE/1402/0080 4R December 2014	Paraquat dichloride (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses	Agrimat Limited, Accra
298	Kurasate 360SL	FRE/1416/0077 2G November 2014	Glyphosate (360g/l)	III	Herbicide for the control of grasses and broadleaf weeds	Kurama Company Limited, Accra
299	Labada 75G	FRE/1455/0073	Glyphosate	III	Herbicide for the	Louis Dreyfus

		1G	(757g/kg)		control of grasses	Commodities
		October 2014			and broadleaf	Gh., Ltd, Tema
					weeds	
300	Lagon 575SC	FRE/16183/102	Aclonifen	III	Pre-emergent	RMG Ghana
		5G	(500g/l) +		herbicide for the	Limited, Accra.
		August 2016	Isoxaflucole		control of grasses	
			(50g/l)		and broadleaf	
					weeds in maize	
301	Laudis 630SC	FRE/17185/110	Tembotrione	III	Herbicide for the	RMG Ghana
		8G	(420g/l) +		control of grasses	Limited, Accra.
		February 2017	Isoxadifen-		and broadleaf	
			ethyl (210g/l)		weeds in maize	
302	Maestro 960EC	FRE/1699/0098	Metolachlor	III	Herbicide for the	Rainbow
		1G	(960g/l)		control of annual,	AgroSciences
		March 2016			perennial broadleaf	Company
					weeds and grasses	Limited, Tema
					in maize	

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
303	Maxitol 865SL	FRE/15142/0084 7G June 2015	2,4-D Amine Salts (865g/l)	III	Herbicide for the control of broadleaf weeds in cereals and sugarcane	Vista 2000 Limited, Accra
304	Nico 400D	FRE/15139/0089 2G August 2015	Nicosulfuron (40g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cereals	Jingbo Agrochemicals Tech. Gh. Co. Ltd., Accra.
305	Nicobest 75WG	FRE/1565/00838 G June 2015	Nicosulfuron (75%)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Rainbow AgroSciences Company Limited, Accra
306	Nicogan 40OD	FRE/14100/0081 7G December 2014	Nicosulfuron (40g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and legumes	Adama West Africa Ltd., Accra

307	Nicoherb 40OD	FRE/1498/00738 G October 2014	Nicosulfuron (40g/l)	III	Herbicide for the control of weeds in cereals and vegetables	J.K. Duku Enterprise, Kumasi
308	Nicoking 40SL	FRE/1699/1003 G August 2016	Nicosulfuron (400g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in maize, rice and soybean	Rainbow AgroSciences Co. Ltd., Tema
309	Nico Plus OD	FRE/1543/00873 G August 2015	Nicosulfuron (4%)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Kumark Company Limited, Kumasi
310	Nicostar 40 SL	FRE/1682/1130 G December 2016	Nicosulfuron (40%)	III	Herbicide for the control of weeds in cereals and vegetables	Cropstar Enterprise, Adum-Kumasi
311	Nnoboa 41SL	FRE/1455/00739 G October 2014	Glyphosate (41%)	III	Herbicide for the control of grasses and broadleaf weeds	J. K. Duku Enterprise, Kumasi
312	Nwura Wura 360SL	FRE/1457/00749 G November 2014	Glyphosate (360g/l)	III	Herbicide for the control of grasses and broadleaf weeds	3
313	Odyssey 70 WG	FRE/1798/1101 G February 2017	Imazamox 350g/l + imazethapyr (350g/l)	II	Herbicide for the control of annual and perennial broadleaf weeds, grasses and sedges in groundnuts and soybeans	CAMA Agro Consult, Accra
314	Ogyatanaa 41SL	FRE/1635/1096 G October 2016	Glyphosate (410g/l)	III	Herbicide for the control of annual, perennial	K. Badu Agrochemicals, Kumasi

		v	grasses a proadleaf weeds cereals vegetables	and in in	

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
315	Orizo Plus SL	FRE/1426/00819 G December 2014	Propanil (360g/l) + 2,4-D Amine salts (200g/l)	II	Selective herbicide for the control of grasses and broadleaf weeds in rice	The Cande Company Limited, Accra
316	Oyeadieyie 41SL	FRE/1439/00795 G November 2014	Glyphosate (410g/l)	III	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Frankatson Limited, Accra
317	Paracot SL	FRE/1458/00787 R November 2014	Paraquat dichloride (200g/l)	II	Non-selective herbicide for the control of grasses and broadleaf weeds	Afcott Ghan Ltd, Kumasi
318	Pencal 500EC	FRE/1506/00928 G December 2015	Pendimethalin (500g/l)	II	Herbicide for the control of grasses and broadleaf weeds and	Calli Ghan Ltd., Tema
319	Pendico 50EC	FRE/1410/00765 G November 2014	Pendimethalin (500g/l)	III	Selective pre- emergent herbicide for the control of weeds in cereals, cotton and soybean	Reiss &Co. Accra
320	Pendigan 400CS	FRE/14100/0081 5G December 2014	Pendimethalin (400g/l)	II	Herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Adama Wes Africa Ltd Accra
321	Pointer 276SL	FRE/15142/0084 8R June 2015	Paraquat dichloride (276g/l)	II	Non-Selective contact herbicide for the control of grasses and broadleaf weeds in soybean, corn, oil palm, rubber and rice	VISTA 200 Ltd Accra

	1		I	1	I	
322	Power 41SL	FRE/1498/00740 G October 2014	Glyphosate (41% w/w)	III	Herbicide for the control of grasses and broadleaf weeds	J. K. Duk Enterprise, Kumasi
323	Pronil Plus SL	FRE/1425/00782 G November 2014	Propanil (360g/l) + 2, 4 D Amine Salt (200g/l)	III	Selective herbicide for the control of grasses and broadleaf weeds in rice	Bentronic Productions, Kumasi
324	Propa Super 36EC	FRE/1623/00988 G March 2016	Propanil (360g/l)	III	Herbicide for the control of broadleaf weeds and grasses in corn, sugarcane, sorghum and pineapple	Thomhcof Company Limited, Kumas
325	Propa Gold EC	FRE/1655/00565 G January 2016	Propanil (360g/l) + 2,4-D Amine (200g/l)	II	Systemic herbicide for the control of broadleaf weeds in rice	Louis Dreyfus Commodities Ghana, Tema
326	Propacal-Plus 480EC	FRE/1543/00861 G August 2015	Propanil (240g/l) + 2, 4- D Isobutyl Ester (240g/l)	II	Selective herbicide for the control of grasses and broadleaf weeds in rice	Kumark Company Limited, Kumas
327	Propaforce Plus EC	FRE/15145/0083 0G June 2015	Propanil (36%) + 2,4-D Isobutyl Ester (20%)	III	Herbicide for the control of weeds in rice	Jubaili Agrote Ltd., Accra
328	Rainbow 25OD	FRE/1498/00740 G October 2014	Penoxsulam (250g/l)	III	Herbicide for the control weeds in rice	Chemico Limited, Tema

No.	Trade Name	Registration No.	Concentration	Haza	Uses	Local
		/ Date of Issue	of Active	rd		Distributor
			Ingredient	Class		
329	Aminespray	FRE/1699/1005G	2,4-D Amine	II	Herbicide for the	Rainbow
	72SL	August 2016	(720g/l)		control of broadleaf	Agrosciences
					weeds in rice	Co Ltd, Accra
330	Rainpendim	FRE/1565/00855	Pendimethalin	III	Herbicide for the	Rainbow
		G	(500g/l)		control of grasses	AgroSciences
		August 2015			and broadleaf	Company
					weeds in maize and	Limited,
					sugarcane	Accra
331	Rainpropa Plus	FRE/1565/00856	Propanil	III	Herbicide for the	Rainbow
		G	(360g/l) + 2,4		control of	AgroSciences
		August 2015	D Amine		Amaranthus	Company
			(200g/l)		retroflexus,Digitari	Limited, Accra
					a spp. Echinochloa	

					cnn Panieum cnn	
					spp., Panicum spp. in rice	
332	Ricenice 360EC	FRE/1699/00982 G March 2016	Propanil (360g/l)	III	Herbicide for the control of <i>Amaranthus</i> retroflexus, Digitaria spp., and Echinochloa spp.in	Rainbow AgroSciences Company Limited, Tema
333	Rid Out 480 SL	FRE/1699/00974 G March 2016	Glyphosate (480g/l)	III	rice Herbicide for the control of annual, perennial grasses and broadleaf weeds.	Rainbow AgroSciences Co. Ltd., Tema
334	Rid Over 757 SG	FRE/1699/00972 G March 2016	Glyphosate ammonium (75.7%)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds.	Rainbow AgroSciences Co. Ltd., Tema
335	Rival 360SL	FRE/1401/00820 G December 2014	Glyphosate (360 g/l)	III	Herbicide for the control of annual and perennial grasses and broadleaf weeds	Wienco (Gh.) Ltd, Accra
336	Roundup 360SL	FRE/1455/00732 G October 2014	Glyphosate (360g/l)	III	Herbicide for the control of annual and perennial broadleaf weeds and grasses	Louis Dreyfus Commodities, Ghana Ltd, Tema
337	Roundup 450 Turbo	FRE/1455/00822 G December 2014	Glyphosate (450g/l)	III	Herbicide for the control of annual grasses and broadleaf weeds	Louis Dreyfus Commodities, Ghana Ltd, Tema
338	Roundup Biosec 72SG	FRE/1555/00858 G August 2015	Glyphosate (720g/kg)	III	Herbicide for the control of aannual, perennial, grasses, sedges and broadleaf weeds in tree plantations and arable crops	Louis Dreyfus Commodities, Ghana Ltd, Tema
339	Sharp 480SL	FRE/1543/00860 G August 2015	Glyphosate (480g/l)	III	Herbicide for the control of annual and perennial grasses and broadleaf weeds in cereals and vegetables	Kumark Company Limited, Kumasi
340	Shye Nwura SL	FRE/1425/00253 G October 2014	Glyphosate (41%w/w)	III	Herbicide for the control of grasses and broadleaf	Bentronic Productions Kumasi

		weeds	

N 0	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
341	Sikosto 360SL	FRE/1416/00771 G November2014	Glyphosate (360g/l)	III	Non-selective herbicide for the control of annual, perennial grasses and broadleaf weeds	Kurama Company Limited, Accra
342	Solito 320EC	FRE/16185/1021 G August 2016	Pretilachlor (30%) + Pyrebenzoxim (2%)	III	Selective herbicide for the control of and broadleaf weeds and grasses in rice	RMG Ghan Limited, Accra
343	Squad 500EC	FRE/1506/00929 G December 2015	Clomazone (150g/l) + Pendimethalin (300g/l)	II	Pre-emergence herbicide for the control of grasses and broadleaf weeds in rice	Calli Ghan Company Ltd. Tema
344	Stam F34EC	FRE/1505/00900 G August 2015	Propanil (360g/l)	II	Herbicide for the control of post emergent annual weeds in rice	Chemico Limited, Tema
345	Starm Plus 36EC	FRE/1602/1043 G August 2016	Propanil (36%)	III	Herbicide for the control of grass weeds in cotton	Agrimat Limited, Madina
346	Star Force	FRE/17145/1092 G February 2017	Fluazifop-P- butyl (150g/l)	III	Herbicides for the control of annual, perennial grasses and broadleaf weeds in cotton and groundnuts	Jubaili Agrote Ltd., Kumasi
347	Stellar Star	FRE/1698/1034 G August 2016	Topramezone (50g/l) + Dicamba (160g/l)	II	Herbicide for the control of annual, perennial broadleaf weeds and grasses in maize	Cama Agre Consult, Accra
348	Stomp 445CS	FRE/1498/00807 G November 2014	Pendimethalin (445g/l)	II	Herbicide for the control of broadleaf weeds and grasses in maize, cotton and tomatoes	Cama Agre Consult, Accra
349	Sun Agogo 33EC	FRE/1657/1059 G September 2016	Pendimethalin (33%)	III	Herbicide for the control of grasses and broadleaf weeds in cereals	Wynca Sunshin Agric Pro &Trad. Co. Ltd Accra.

					and vegetables	
350	Sun-Anico OF	FRE/1657/1070 R September 2016	Atrazine (20%) + Nicosulfuron (3%)	III	Herbicide for the control of broadleaf weeds and grasses in maize	
351	Sunbuzin 70WP	FRE/1657/1054 G September 2016	Metribuzin (700g/kg)	III	Herbicide for the control of broadleaf weeds in soybean	Wynca Sunshin Agric Pro &Trad. Co. Ltd Accra.
352	Sun 2,4-D Amine 72SL	FRE/1657/1061 G September 2016	2, 4-D Amine (720g/l)	II	Herbicide for the control of broadleaf weeds and sedges	,
353	Sun 2,4-D PRO 560EC	FRE/1457/00756 G November 2014	2, 4-D Amine (560g/l)	II	Herbicide for the control of broadleaf weeds and sedges	3
354	Sun-Bromacil 80WP	FRE/1557/00835 G June 2015	Bromacil (800g/kg)	III	Herbicide for the control of broadleaf weeds and grasses in pineapples	2

No.	Trade Name	Registration No. / Date of Issue	Concentrati on of Active Ingredient	Hazard Class	Uses	Local Distributor
355	Sun-Diuron 80WP	FRE/1557/00836 G June 2015	Diuron (800g/kg)	III	Herbicide for the control of weeds in pineapples, mangoes and cashew	Wynca Sunshin Agric Product &Trading Co. Limited, Accra
356	Sunfuron 75WDG	FRE/1457/00755 G November 2014	Nicosulfuro n (750g/kg)	III	Herbicide for the control of broadleaf weeds in cereals and vegetables	Wynca Sunshin Agric Product &Trading Co. Ltd Accra
357	Sunfuron 80WP	FRE/1457/00754 G November 2014	Nicosulfuro n (800g/kg)	III	Herbicide for the control of broadleaf weeds in cereals and vegetables	Wynca Sunshin Agric Product &Trading Co Limited, Accra
358	Sunfuron 40OD	FRE/1657/1055 G September 2016	Nicosulfuro n (40g/l)	III	Herbicide for the control of grasses and broadleaf weeds in maize	Wynca Sunshin Agric Prdts &Trading Co. Ltd, Accra

359	Sun-Paraquat 200SL	FRE/1557/00837 R June 2015	Paraquat dichloride (200g/l)	II	Non-selective herbicide for the control of broadleaf weeds and grasses	Wynca Sunshin Agric Product & Trading Co. Limited, Accra
360	Sunphosate 360 SL	FRE/1457/00750 G November 2014	Glyphosate (360g/l)	III	Herbicide for the control of broadleaf weeds and grasses	Wynca Sunshin Agric Product &Trading Co. Limited, Accra
361	Sunphosate 757 WSG	FRE/1457/00752 G November 2014	Glyphosate (757g/kg)	III	Herbicide for the control of broadleaf weeds and grasses	Wynca Sunshin Agric Product &Trading Co. Limited, Accra
362	Sun-Gallop	FRE/1657/1056 G September 2016	Haloxyfop- P-methyl (108g/l)	III	Pre-emergence herbicide for the control of annual broadleaf weeds in cereals and beans	Wynca Sunshin Agric Prdts &Trading Co. Ltd, Accra
363	Sunphocate 360SL	FRE/1657/1058 G September 2016	Glyphosate (360g/l)	III	Herbicide for the control of annual, perennial grasses in onion, garlic, tulips and cotton	Wynca Sunshin Agric Prdt &Trac Co. Ltd, Accra.
364	Sunphosate Plus	FRE/1657/1060 G September 2016	Glyphosate (30%) + MCPA (6%)	III	Herbicide for the control of broadleaf weeds and grasses in rubber and citrus plantations	Wynca Sunshin Agric. Product &Trading Co. Ltd Accra.
365	Sunphosate Ultra SL	FRE/1657/1057 G September 2016	Glufosinate Ammonium (200g/l)	III	Non-selective systemic herbicide for the control of weeds in rubber and citrus plantations	Wynca Sunshin Agric. Product &Trading Co. Ltd. Accra.
366	Suprazone SC	FRE/1455/00729 R October 2014	Paraquat dichloride (200g/l)	II	Non-selective herbicide for the control of broadleaf weeds and grasses	Louis Dreyfu Commodities, Ghan Ltd, Tema
367	Tackle 360SL	FRE/1626/1052 September 2016	Glyphosate (360g/l)	IV	Herbicide for the control of grasses, sedges and broadleaf weeds in pineapple	The Candel Company Limited, Accra

No.	Trade Name	Registration No. / Date of		Haza rd	Uses	Local Distributor
368	Terbulor 500EC	FRE/15100/0091 3G September 2015	Metalachlor (333g/l) + Terbutryn (167g/l)	Class	Non-selective, pre- emergent herbicide for the control of weeds in cereals, cotton and tubers	Adama Wes Africa Ltd Accra
369	Thomabest Super 200SL	R March 2016	Paraquat dichloride (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses in cereals	Thomhcof Company Limited, Kumas
370	Topstar 400SC	FRE/16183/1026 G August 2016	Oxadiargyl (400g/l)	III	Pre-emergent herbicide for the control of annual grasses and broadleaf weeds in rice	RMG Ghana limited, Accra
371	Vezir 240SL	FRE/1410/00812 G December 2014	Imazethapyr (204g/l)	III	Herbicide for control of annual, perennial grasses and broadleaf weeds in cereals and vegetables	Adama West Africa Ltd., Accra
372	Vision 568WG	FRE/1506/00927 G December 2015	Amicarbozone (280g/kg) + Mesotrione (288g/kg)	III	Herbicide for the control of grasses and broadleaf weeds and sedges	Calli Ghana Ltd., Tema
373	Weedall SL	FRE/1543/00862 G August 2015	Glyphosate (480g/l)	III	Selective herbicide for the control of grasses and broadleaf weeds in cereals and vegetables	Kumark Company Limited, Kumasi
374	Winner 41SL	FRE/1623/00990 G March 2016	Glyphosate (410g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in cereals	Thomhcof Company Limited, Kumasi
375	Wiper 720SL	FRE/14100/0081 6G December 2014	2,4-D Amine (720g/l)	II	Herbicide for the control of broadleaf weeds and sedges in cereals	Adama wes Africa Ltd Accra
376	Wynna SL	FRE/1457/00751 G November 2014	Glyphosate (410g/l)	III	Non-selective herbicide for the control of grasses and broadleaf	Wynca Sunshin Agric Product &Trading Co Ltd, Accra

					weeds in cereals and vegetables	
377	Wynna 360SL	FRE/1457/00753 G November 2014	Glyphosate (360g/l)	III	Herbicide for the control of grasses and broadleaf weeds and grasses	Agric Product
378	XTRA-D	FRE/16108/0099 2G March 2016	2,4 –D Amine (720g/l)	III	Herbicide for the control of broadleaf weeds in cereals and tree crops	,
379	Zoomer 390SC	FRE/15100/0091 2G September 2015	Oxyfluorfen (300g/l)+ Glyphosate (360g/l)	III	Herbicide for the control of broadleaf weeds and grasses in maize and vegetables	Adama Wes Africa Ltd Accra

(A) Fully Registered Pesticides (FRE)

(A4) Plant Growth Regulators

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
380	Callel 480SL	FRE/1406/00748G November 2014	Ethephon (280g/l)	III	Plant growth regulator for degreening of pineapple	Calli Ghana Co. Ltd., Tema
381	Callel 5% PA	FRE/1506/00919G September 2015	Ethephon (5%)	III	Plant growth regulator for degreening of pineapple	Calli Ghana Co. Ltd., Tema
382	Chemophon 480SL	FRE/1505/00904G August 2015	Ethephon (480g/l)	III	Plant growth regulator for degreening of pineapples	Chemico Ltd, Tema
383	Flower Up 40SL	FRE/1557/00889/G August 2015	Ethephon (40%)	III	PGR for acceleration of maturation in tomatoes and bananas	Wynca Sunshine Agric Products &Trading Co. Ltd, Accra
384	Hevetex P	FRE/1655/00968G January 2016	Ethephon (5%)	III	Ethylene generator for stimulation of latex production	Louis Dreyfus Commodities Ghana Ltd, Tema
385	Mat 480SL	FRE/1455/00727G October 2014	Ethephon (480g/l)	III	Plant growth regulator for degreening of pineapples	Louis Dreyfus Commodities Ghana Ltd, Tema
386	RyzUp 40SG	FRE/1480/00743G November 2014	Gibberellic acid 1.279 billion	U	Plant growth regulator for banana	Challux Ltd, Accra

			ITU/l					
387	Sino Booster AS	FRE/1730/1120G February 2017	Humic (16%)	Acid	IV	Plant regulator stimulating in potatoes, and soybean.	-	Natosh Enterprise, Kumasi

(A5) Molluscicide

No.	Trade	Registration No. /	Concentration	Hazard	Uses	Local
	Name	Date of Issue	of Active	Class		Distributor
			Ingredient			
388	Carakol	FRE/16100/00997	Acetic	III	Molluscicide for	Adama West
		G	metaldehyde		the control of	Africa Ltd.,
		August 2016	(50g/kg) +		snails, slugs and	Accra
			Denatonium		other gastropods	
			benzoate			
			(0.3g/kg)			

(A) Fully Registered Pesticides (FRE)

(A6) Nematicides

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Class	Uses	Local Distributor
389	Carbodan	FRE/1543/00866G June 2015	Carbofuran (3%)	II	Nematicide/ Insecticide for the control of nematodes in vegetables	Kumark Company Limited, Kumasi
390	Marshal 480EC	FRE/1505/00906G August 2015	Carbosulfan (480g/l)	II	Nematicide/ insecticide for the control of scale, nematodes and symphylids in pineapple	Chemico Ltd., Tema
391 3	Rugby 10G	FRE/1505/00905G August 2015	Cadusafos (10%)	II	Nematicide /insecticide for the control of nematodes	Chemico Ltd., Tema
392	Velum Prime 400SC	FRE/16183/00969 G March 2016	Fluopyram (400g/l)	III	Nematicide for the control of nematodes in pepper, tomatoes and okro	RMG Ghana, limited, Accra

(A7) Adjuvants

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haza rd Clas s	Uses	Local Distributor
393	Bladbuff 5	FRE/1408/00715G October 2014	Phosphoric acid + alcohol ethoxylate	U	An adjuvant for use as a wetting and spreading agent for contact and systemic fungicides and herbicides	Dizengoff, Gh. Ltd., Accra
394	Break-thru S240	FRE/14157/00784G November 2014	Polyether- polymethylsiloxane- copolymer (1000g/l)	U	Surfactant to improve the spreading, wetting and penetration of water based pesticide formulationson leaves ofvegetables, fruits and arable crops	Evonik West Africa Accra.
395	EOS	FRE/14100/00762G November 2014	White summer spray oil (800g/l)	U	Adjuvant for public health use	Adama West Africa Ltd., Accra
396	Sticker	FRE/17133/1121G February 2017	Silicon/Trisiloxane surfactant	U	Spreader to improve spray coverage	Abnark Agro Services. Kumasi
397	Stockosorb 660	FRE/14157/00785G November 2014	Micro/Menum/ XL (Potassium Polyacrylate)	U	To improve water retention in soil	Evonik West Africa Accra.

(A) Fully Registered Pesticides (FRE)

(A8) Biocides

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas s	Uses	Local Distributor
398	BPC68950	FRE/15181/0094	2,2-dibromo-2-	III	Biocide	Baker
		9/G December	cyanoacetatmide		against	Hughes/Tullow
		2015			general	Ghana Ltd.,
					anaerobic	Accra

					and	
					sulphate reducing bacteria	
399	PFR8427 Rocide	FRE/15181/0094 6/G December 2015	5-chloro-2- methyl-4- isothiazolin-3-one 5% + 2-methyl- 2H-isothiazol-3- one (5%)	III	Bactericide for the inhibition of the growth of bacteria	Baker Hughes/Tullow Ghana Ltd., Accra
400	Aqucar Water Biocide	FRE/15181/0094 5/G December 2015	Glutaraldehyde (30-60%)	U	Biocide for the treatment of produced water system offshore for safe over boarding	Baker Hughes/Tullow Ghana Ltd., Accra
401	XC 82205	FRE/15181/0094 7/G December 2015	3,3-methylenebis- 5methloxazolidin e (60%)	III	Bactericide for the inhibition of the growth of bacteria	Baker Hughes/Tullow Ghana Ltd., Accra
402	XC 85293	FRE/15181/0094 8/G December 2015	Phosphonium Quartenary Salt (60%)	III	Bactericide for the inhibition of the growth of bacteria	Baker Hughes/Tullow Ghana Ltd., Accra
403	Promex DB-20	FRE/15120/0095 0/G December 2015	2,2-Dibromo-3- nitrilopropionami de (20%)	II	Bactericide/ fungicide for the control of bacteria and fungus in aqueous solutions	BBC Industrials Co. Ltd., Accra
404	Promex CHS-3	FRE/15120/0095 2/G December 2015	1,6-Dihydroxy-2, 5-dioxahexane (20%) + 5-chloro- 2-methyl-4- isothiazolin-3-one (1%) + 2-methyl- 4-isothiazolin-3- one (1%)	II	Bactericide/ fungicide for the control of bacteria and fungus in aqueous solutions	BBC Industrials Co. Ltd., Accra
405	PermaClean PC-11	FRE/17200/1116 G February 2017	2,2 Dibromo-3- nitrilopropionami de	U	Control bacteria fouling of ultrafiltratio n units, non	Nalco Champion, Gh., Ltd, Accra

406	PermaClean PC-56	FRE/17200/1117 G February 2017	5-Chloro-2- methyl-4- isothiazoline-3- one + 2-Methyl- 4-isothiazoline-3- one	U	medical or non potable reverse osmosis membranes and peripheral systems For controlling bacteria fouling of ultrafiltratio n units, non medical or non potable reverse osmosis membranes and peripheral systems	Nalco Champion, Gh., Ltd, Accra
407	Nalco 303MC	FRE/17200/1118 G February 2017	1-(2- hydroxyethyl)-2- alkyl (C-18)-2- imidazoline	U	Diesel biocide	Nalco Champion, Gh., Ltd, Accra
408	BIOC11077 A	FRE/17200/1119 G February 2017	Glutaraldehyde (15% + water (85%)	U	Biocide	Nalco Champion, Gh., Ltd, Accra

(B) PROVISIONALLY CLEARED PESTICIDES (PCL)

(B1) Insecticides

No.	Trade	Registration	Concentration of	Hazar	Uses	Local
	Name	No. / Date of	Active	d		Distributor
		Issue	Ingredient	Class		
409	Adepa Agro	PCL/16193/008	Ethyl palmitate	U	Insecticide for	Kwadutsa
	Organic	38G			the control of	and Joam
	Pesticide	October 2016			mites, ticks,	Co. Ltd.,
					caterpillars,	Suame-
					mealybugs and	Kumasi.
					bacteria blight	
					in vegetables,	
					cashew, mango	
					and citrus	
410	Agrifog	PCL/17173/008	Deltamethrin	III	Insecticide for	Agromonti
	Maxi	91G	(14%)		the control of	Co. Ltd.,
	Smoke	February 2017			household	Accra

	Generator				insect pests	
411	Agropy 5EW	PCL/16197/008 67G	Pyrethrum (50g/l)		Insecticide for the control of	Yayra Glover Ltd.,
412	Agroxin Tablet	November 2016 PCL/16145/008 72R December 2016	Aluminium Phosphide (57%)	Ib	Insecticide for the control of insect pests of stored grains	Suhum Jubaili Agrotec Ltd., Kumasi
413	Akate Asa	PCL/16196/008 66G November 2016	Bifenthrin (3%)	II	Insecticide for the control of mirids in cocoa	Pear River Company Ltd. Accra
414	Akate Brafo 40EC	PCL/1606/0078 2G August 2016	Acetamiprid (20g/l) + Bifenthrin (20g/l)	III	Insecticide for the control of mirids in cocoa	Calli Ghana Ltd., Tema
415	Akate Commando	PCL/17198/008 94G January 2017	Bifenthrin (30g/l) + Acetamiprid (16g/l)	II	Insecticide for the control of mirids in cocoa	Cedar Seal Co. Ltd., Accra
416	Ba-Pyrifos 48EC	PCL/1681/0088 1G December 2016	Chlorpyrifos (480g/l)	II	Insecticide for the control of insect pest in rice and vegetables	B. Kaakyire Agrochemic als, Kumasi
417	Belt Expert 480SC	PCL/1785/0090 4G February 2017	Flubendiamide (420g/l) + Thiacloprid (240g/l)	II	Insecticide for the control of insect pests in cotton	RMG Ghana, Limited, Accra
418	Bonfop EC	PCL/16149/008 03G August 2016	Haloxyfop-P-methyl (104g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in pineapples, vegetables, soybean and cotton	Bon Agro Company Ltd., Kumasi.
419	Bon Proplus	PCL/16149/008 04G August 2016	Propanil (360g/l) + 2,4-D Amine (200g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in rice and field crops	Bon Agro Company Ltd., Kumasi.
420	Bonpyrifos 48EC	PCL/16149/008 01G August 2016	Chlorpyrifos (480g/l)	II	Insecticide for the control of caterpillars, borers, beetles,	Bon Agro Company Ltd., Kumasi.

		spider mites, ticks, fire ants in vegetables	

No	Tuede	Dominturation	Concentuation of	Hanand	Ilaaa	Local
No.	Trade Name	Registration No. / Date of	Concentration of Active	Hazard Class	Uses	Local Distributor
	Name	Issue	Ingredient	Class		Distributor
421	Bon Optimal EC	PCL/16149/008 02G August 2016	Acetamiprid (2%) + Lambda- cyhalothrin (1.5%)	III	Insecticide for the control of aphids, whiteflies and leaf miners in	Bon Agro Company Ltd., Kumasi.
422	Bon Victory WP	PCL/16149/008 05G August 2016	Mancozeb (640g/kg) + Metalaxyl (80g/kg)	II	vegetables Fungicide for the control of fungal diseases in vegetables	Bon Agro Company Ltd., Kumasi.
423	Cisthrin	PCL/1699/0078 7G August 2016	Deltamethrin (12.5g/l)	II	Insecticide for the control of borers, aphids, bollworm, cutworm, mango weevil and strainers in maize, cassava, yam, sorghum, groundnuts and vegetables	Rainbow AgroSciences Co. Ltd., Tema.
424	Cocomate 24EC	PCL/16188/008 21G September 2016	Thiamethoxam (24%)	III	Insecticide for the control of mirids and capsids in cocoa	West Africa Commodity Co. Ltd., Accra
425	Colam 247ZC	PCL/1699/0084 9G October 2016	Thiamethoxam (141g/l) + Lambda- cyhalothrin (106g/l)	II	Insecticide for the control of sucking and chewing insects in rice, tomato, cotton, beans, cabbage and watermelon	Rainbow Agrosciences Co. Ltd., Accra
426	Commander 20SL	PCL/16188/008 19G September 2016	Imidacloprid (20%)	III	Insecticide for the control of mirids and capsids in cocoa	West Africa Commodity Co. Ltd., Accra
427	Dastoxion T	PCL/16166/009 09R December 2016	Aluminium phosphide 57%)	Ib	Insecticide for the control of pest in stored	Dasimah Enterprise, Adum-Kumasi

					grains	
428	Dresscare DS	PCL/16145/008 76G December 2016	Imidacloprid (20%)+ Metalaxyl-M (20%) + Tebuconazole (2%)	II	Insecticide/ Fungicide for seed treatment	Jubaili Agrotec Ltd., Accra
429	Dynamo WP	PCL/16189/008 23G September 2016	Beauveria bssiana (1%)	U	Insecticide for the control of caterpillars, diamondback moth, bollworm in vegetables, semi looper and fruit borers in vegetables and arable crops	West Africa Ltd., Tema
430	Fixe 50SC	PCL/1635/0079 7G August 2016	Fipronil (50g/l)	II	Insecticide for the control of caterpillars, weevils, fire ant, termites and thrips in vegetables and fruits	Louis Dreyfus Commodities Ltd., Tema
431	Fly marshall SC (oils 55%	PCL/17199/009 03G February 2017	Spinosad (0.002% + aromatic compounds)	II	Insecticide for the control of fruit flies in vegetables and fruits	Chemyda Company Limited, Accra

No.	Trade	Registration	Concentration of	Hazard	Uses	Local
	Name	No. / Date of	Active	Class		Distributor
		Issue	Ingredient			
432	Grain-Mate	PCL/1657/0084	Aluminium	Ib	Insecticide for	Wynca
		2R	phosphide (56%)		the control of	Sunshine
		October 2016			storage pests in	Agric.
					stored grain	Products
						&Trading Co.
						Ltd., Accra.
433	Hoprole	PCL/1657/0084	Indoxacarb (95%)	II	Insecticide for	Rainbow
	30WG	8G			the control of	Agrosciences
		October 2016			diamondback	Co. Ltd.,
					moth, beetles,	Accra
					caterpillars and	
					cabbage moth in	
					cabbage,	
					tomatoes and	
					cowpea	

434	Imicare Plus	PCL/16145/008 73G December 2016	Imidacloprid (15%) + Lambda- cyhalothrin (5%)	II	Insecticide for the control of contact and stomach acting insects in fruit trees, cereals, cowpea, soybean, groundnut, cassava, oil palm and vegetables	Jubaili Agrotec Ltd, Kumasi.
435	Imicare SL	PCL/16145/008 74G December 2016	Imidacloprid (200g/l)	II	Insecticide for the control of plant hoppers aphids and whiteflies in rice and tomatoes	Jubaili Agrotec Ltd, Kumasi
436	Inspire 30 EC	PCL/1706/0090 0G February 2017	Etofenprox (303.68g/l)	U	Insecticide for the control of mirids in cocoa.	Calli Ghana Company Limited
437	Intact 2.5EC	PCL/16186/007 95G August 2016	Lambda- cyhalothrin (2.5%)	III	Insecticide for the control of bollworms, leafhoppers, caterpillars, and strainers in cotton, rice maize and vegetables	Ivorychem Co. Ltd., Kumasi
438	J-Furan 3G	PCL/17145/008 95R February 2017	(Carbofuran 3%)	II	Insecticide for the control of sugarcane shoot borer	Jubaili Agrotec Ltd, Kumasi
439	Killtox Insecticide Aerosol	PCL/16195/008 40G October 2016	Permethrin (1.15%) + Tetramethrin (0.2%) + Piperonyl butoxide (0.6%) + Odorless kerosene (33.05%) + LPG (65%)	II	Insecticide for the control of flying insects	Mash Distribution, Accra
440	Klopar 24 SC	PCL/16133/008 22G September 2016	Chlorfenapyr (240g/l)	II	Insecticide for the control of mites, armyworm, diamondback moth and cotton bollworm in	Abnark Agro Services Enterprise, Kumasi

					vegetables	
441	Lagano	PCL/17184/008	Lambda-	II	Insecticide for	Ganorma
	2.5EC	88G	cyhalothrin	·	the control of	Agrochemicals
		February 2017	(25g/l)	,	aphids, beetles,	, Tamale
				,	thrips in cotton	
					and vegetables	

NT	T 1	D		** 1	TT.	T 1
No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Hazard Class	Uses	Local Distributor
442	Laracare 2.5EC	PCL/16145/008 75G December 2016	Lambda- cyhalothrin (2.5%)	II	Insecticide for the control of insect pests in vegetables and pulses	Jubaili Agrotec Ltd, Kumasi
443	Lycan WP	PCL/1672/0082 5G September 2016	Verticilium lecanii (1.15%)	U	Biological insecticide for the control of whiteflies, green hoppers, thrips, mealybugs, brown hopppers and leafminers in tomatoes and cowpea	Agropharm West Africa Ltd., Tema
444	Mosquito Hell	PCL/1757/0090 2G February 2017	S-Bioallethrin (0.2%)	II	Insecticide for control of mosquitoes	Wynca Sunshine Agric Products and Trading Co., (Gh) Ltd., Accra
445	Nemaran 3GR	PCL/1699/0085 0G October 2016	Carbofuran (3%)	II	Insecticide for the control of insect pests in vegetables, sugarcane, cotton, rice and groundnut	Rainbow Agrosciences Co. Ltd., Accra
446	Organic JMS Stylet Oil	PCL/1608/0081 8G October 2016	White Mineral Oil	U	Insecticide/ fungicide for the control of aphids, mites, thrips, powdery mildew, botrytis and rust in vegetables and fruits	Dizengoff Ghana Ltd., Accra
447	Orizon 120SC	PCL/1608/0082 9G	Acetamiprid (100g/l) +	II	Insecticide for the control of	Dizengoff Ghana Ltd.,

		October 2016	Abamectin (20g/l)		insect pests in vegetables and citrus	Accra
448	Pridapod	PCL/16191/008 37G October 2016	Imidacloprid (200g/l)	II	Insecticide for the control of mirids in cocoa	USICO Gh. Ltd, Accra.
449	Proteus 170 O-TEG	PCL/17185/009 05G February 2017	Thiacloprid (150g/l) + Deltamethrin (20g/l)	II	Systemic insecticide for the control of mirids in cocoa	RMG Ghana Limited, Accra
450	Rocket 20EC	PCL/16145/008 71G December 2016	Chlorpyrifos (20%)	II	Insecticide for the control of insect pest in cotton, citrus and vegetables	Kumasi
451	Rockstar 2.5EC	PCL/16188/008 20G September 2016	Bifenthrin (2.5%)	III	Insecticide for the control of mirids and capsids in cocoa	West Africa Commodity Co. Ltd., Accra
452	Savahaler WP	PCL/1635/0079 6G August 2016	Methomyl (250g/kg)	II	Insecticide for the control of insect pests in vegetables, fruits, cotton, soybean and other crops	Ltd., Tema
453	Sivanto Energy 085 EC	PCL/17185/008 99G February 2017	Flupyradifurone 75g/l + Deltamethrine (10 g/l)	II	Insecticide for the control of mirids in cocoa.	RMG Ghana Ltd., Accra

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Hazard Class	Uses	Local Distributor
454	Sunpri-Lam 25EC	PCL/1657/0084 1G October 2016	Cypermethrin (2.5%) + Chlorpyrifos (22.5%)	II	Insecticide for the control of aphids, jassids, thrips, whiteflies, bollworms and cutworm in eggplant, cotton, tomatoes and lettuce	Wynca Sunshine Agric. Products &Trading Co. Ltd., Accra.
455	Swipe Mosquito Coil	PCL/16194/008 39G October 2016	D-Allethrin (0.47%)	III	Insecticide for the control of mosquitoes	Haano Limited, Accra
456	Termidor	PCL/1698/0080	Fipronil (25g/l)	III	Insecticide for	Cama Agro

	SC	9G August 2016			the control of termites in cabbage, onion, eggplant and maize	Consulting (C.AC). Ltd., Accra
457	Trika Expert	PCL/1608/0081 7G September 2016	Lambda- cyhalothrin (25%)	II	Insecticide for the control of insect pests in vegetables and public health purposes	Dizengoff Gh. Ltd., Accra
458	Viper Super 80 EC	PCL/1706/0090 1G February 2017	Indoxacarb (60g/l) + Acetamiprid (20g/l)	III	Insecticide for control of cocoa mirids	Calli Ghana Ltd., Tema
459	Voliam Flexi 300SC	PCL/1606/0078 1G August, 2016	Chlorantraniliprol e (100g/l) + Thiamethoxam (200g/l)	III	Insecticide for control of mirids in cocoa	Calli Ghana Ltd., Tema

(B) PROVISIONALLY CLEARED PESTICIDES (PCL)

(B2) Fungicides

No.	Trade	Registration No.	Concentration of	Hazard	Uses	Local
	Name	/ Date of Issue	Active Ingredient	Class		Distributor
460	Archer	PCL/1672/00826	Lantana camara	U	Fungicide for	Agropharm
	75 SP	G	(75%)		the control of	West Africa
		September 2016			leafspot, blast,	Ltd., Tema
					powdery	
					mildew, leaf	
					curl, early	
					blight, late	
					blight and leaf	
					curl in fruits and	
		707 /4 64 00 /000			vegetables	
461	Arrest	PCL/16189/0082	Azoxystrobin	III	Fungicide for	Matrix
	325 SC	8G	(200g/l) +		the control of	
		August 2016	Difenoconazole		leafspot, leaf	Ltd., Accra
			(125g/l)		blight, blast,	
					black spot, rust,	
					brown spot in	
					vegetables, tree	
					crops, cereals and ornamentals	
462	Banko D	PCL/1606/00784	Chlorothalonil	III		Calli. Ghana
462	450SC	G PCL/1606/00/84		1111	Fungicide for the control of	
	43030	_	(400g/l) + Difenoconazole			Liu., I eilia
		August 2016	Diffellocollazole		<i>Alternaria sp.</i> in	

			(50g/l)		tomatoes	
463	Carinho WP	PCL/1635/00799 G August 2016	Carbendazim (500g/kg)	III	Fungicide for the control of leaf spot, leaf mould and stem rot in vegetables	Louis Dreyfus Commodities Ltd., Tema
464	Defender 35WP	PCL/1666/00869 G November 2016	Copper oxychloride (350g/l)		Fungicide for the control of fungal diseases	Sidalco Co. Ltd., Accra
465	Five Star 325SC	PCL/1699/00857 G October 2016	Azoxystrobin (200g/l) + Difenoconazole (125g/l)	U	Fungicide for the control of brown spot, blackspot, rust and white mould in cabbage, cauliflower, cowpea, soybean, bulb vegetables, groundnut, sweetcorn and sweetpotato.	Rainbow Agrosciences Co. Ltd., Accra
466	Grosudine Super 50SC	PCL/16165/0079 2G August 2016	Imidacloprid (30g/l) + Bifenthrin (20g/l)	II	Insecticide for the control of aphids, whiteflies and mealybugs in vegetables	PakGhana Co. Ltd., Kumasi
467	Redox Super SL	PCL/16165/0079 0G	Imidacloprid (200g/l)	II	Insecticide for the control of aphids, whiteflies and mealybugs in vegetables	PakGhana Co. Ltd., Kumasi
468	Shaolin 62.5WG	PCL/1699/00858 G November 2016	Cyprodinil (37.5%) + Fludioxonil (25%)	III	Fungicide for the control of diseases in tomato, mango, green pepper, carrot and pawpaw	Rainbow Agrooscience s Co. Ltd., Accra

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Hazard Class	Uses	Local Distributor
469	Sun- Cotala WP	PCL/1657/00845 G October 2016	Copper hydroxide (770g/kg)		Fungicide for the control of angular leaf spot in cucumber	Sunshine

						&Trading Co. Ltd., Accra.
470	Sunkopper 77WP	PCL/1657/00846 G October 2016	Mancozeb (480g/kg) + Metalaxyl (100g/kg)	III	Fungicide for the control of downy mildew in cucumber	
471	Supreme 325SC	PCL/1610/00861 G October 2016	Azoxystrobin (200g/l) + Difenoconazole (125g/l)	U	Fungicide for the control of leaf blight, powdery mildew, early and late blight, blast and downy mildew in vegetables and cereals	Reiss &Co. (Gh) Ltd., Accra
472	Terminato r	PCL/17173/0089 2G February 2017	Mancozeb (640g/kg) + Metalaxyl (80g/kg)	III	Fungicide for the control of broad-spectrum fungi in vegetables	Agromonti Co. Ltd., Accra
473	Tricost	PCL/1672/00827 G September 2016	Trichoderma viride (1%) WP	U	Microbial fungicide for the control of fungal diseases in rice, maize, sugarcane, cotton, millet and vegetables	Agropharm West Africa Ltd., Tema
474	Trustar 85WG	PCL/1699/00856 G October 2016	Azoxystrobin (49%) + Terbuconazole (36%)	IV	Fungicide for the control of diseases in sweetcorn, rice, soybean, tomato and banana	Rainbow Agrooscience s Co. Ltd., Accra

(B) PROVISIONALLY CLEARED PESTICIDES (PCL)

(B3) Herbicides

No	Trade	Registration	Concentration	Haz	Uses	Local
•	Name	No. / Date of	of Active	ard		Distributor
		Issue	Ingredient	Clas		
				S		
475	Adwumade	PCL/16144/0	Glyphosate	III	Herbicide for the control of	S.O. Ansah
	n	0864G	(410g/l)		annual, perennial grasses	Enterprise,
	41 SL	October 2016			and broadleaf weeds in	Kejetia.

					field crops	Kumasi
476	Agronil 36EC	PCL/1610/00 860G October 2016	Propanil (360g/l)	III	Herbicide for the control of annual grasses in rice	Reiss &Co. (Gh.) Ltd., Accra
477	Atraforce 50% SC	PCL/17145/0 0897R February 2017	Atrazine (50%)	II	Herbicide for the control of annual and perennial broadleaf weeds and grasses in maize, and sugarcane,	Jubaili Agrotec Ltd, Kumasi
478	Atraforce 80% WP	PCL/17145/0 0898R February 2017	(Atrazine 80%)	II	Herbicide for the control of annual and perennial broadleaf weeds and grasses in maize, and sugarcane,	Jubaili Agrotec Ltd, Kumasi
479	Atraherb 80WP	PCL/1698/00 906R December 2016	Atrazine (80%)	II	Herbicide for the control of annual and perennial grasses and broadleaf weeds	J. K. Duku Enterprise, Kumasi
480	Atraplus 600SC	PCL/1699/00 780G August 2016	Atrazine (300g/l) + Terbutylazine (300g/l)	III	Herbicide for the control of weeds in maize and sorghum	Rainbow AgroSciences Co., Ltd., Accra
481	Atrazine Super 80WP	PCL/1602/0 0811R August 2016	Atrazine (800g/kg)	III	Herbicide for the control of annual, perennial grass weeds in maize, sorghum and pineapple	Agrimat Limited, Accra
482	Benapa 460SL	PCL/1699/00 853G October 2016	Bentazone (400g/l) + MCPA (60g/l)	II	Contact and selective post- emergence herbicide for the control of grasses in rice, maize, sorghum and sugarcane	Rainbow Agrosciences Co. Ltd., Accra
483	Bencinate 53WP	PCL/1610/00 859G October 2016	Mefenacet (95%) + Bensulfuron- methyl (97.5%)	U	Herbicide for the control of grasses, sedges and broadleaf weeds in paddy rice	Reiss &Co. (Gh.) Ltd., Accra

No ·	Trade Name		Concentration of Active Ingredient		Uses	Local Distributor
				S		
484	Bonbuta	PCL/16149/0	Butachlor	II	Herbicide for the control of	Bon Agro
		0835G	(50%)		annual, perennial broadleaf	Company Ltd.,
		October 2016			weeds in rice, groundnut	Kumasi

					and carrots	
485	Bon Nico	PCL/16149/0 0800G October 2016	Niosulfuron (40g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in maize	Bon Agro Company Ltd., Kumasi
486	ButaClear 50EC	PCL/17184/0 0886G February 2017	Butachlor (50%)	III	Pre-emergence herbicide for the control of annual, perennial and broadleaf weeds in paddy rice	Ganorma Agrochemicals , Tamale
487	Degan SC	PCL/17184/0 0883G February 2017	Bispyribac sodium (455g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds in paddy rice	Ganorma Agrochemicals , Tamale
488	Diz- Paraquat 20SL	PCL/1608/00 807R August 2016	Paraquat dichloride (200g/l)	II	Herbicide for the control of annual, perennial weeds and grasses in cereals and fruits	Dizengoff Gh. Ltd., Accra.
489	Flysate	PCL/16145/0 0877G December 2016	Glyphosate (41%)	III	Herbicide for the control of annual, perennial weeds in cereals and vegetables	Jubaili Agrotec Limited, Kumasi
490	ForceUp Granular	PCL/16145/0 0878G December 2016	Glyphosate Mono- ammonium salt (757g/kg)	III	Herbicide for the control of annual, perennial weeds in citrus	Jubaili Agrotec Ltd, Accra
491	Frankoquat 20SL	PCL/1639/00 834R October 2016	Paraquat dichloride (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses in cereals and vegetables	Frankatson Limited, Accra
492	Ganico 40EC	PCL/17184/0 0887G February 2017	Nicosulfuron (40g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds in arable crops	Ganorma Agrochemicals , Tamale
493	Ganorherb SL	PCL/17184/0 0882G February 2017	2, 4-D Amine Salt (720g/l)	III	Herbicide for the control of annual, perennial weeds in maize	Ganorma Agrochemicals , Tamale
494	Ganorsate 360 SL	PCL/17184/0 0884G February 2017	Glyphosate (360g/l)	III	Herbicide for the control of annual, perennial weeds in arable crops	Ganorma Agrochemicals , Tamale
495	Ganorzine 80WP	PCL/17184/0 0885R February 2017	Atrazine (800g/kg)	II	Herbicide for the control of annual, perennial broadleaf weeds in maize	Ganorma Agrochemicals , Tamale
496	Gramoquick super SL	PCL/1698/00 907R December 2016	Paraquat (200g/l)	II	Contact herbicide for the control of grasses and other weeds	J. K. Duku Enterprise, Kumasi

No ·	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas s	Uses	Local Distributor
497	Gramotouch Super 20SL	PCL/16144/0 0865R October 2016	Paraquat (200g/l)	II	Herbicide for the control of grasses and broadleaf weeds in banana, rubber, coconut, oil palm, mango, corn and soybean	S.O. Ansah Enterprise, Kumasi
498	Halaxy 108EC	PCL/1699/00 854G October 2016	Haloxyfop-P- Methyl (108g/l)	IV	Herbicide for the control of weeds in cereals, leafy vegetables, pineapple, soybean, cowpea and cotton	Rainbow AgroSciences Co. Ltd., Accra
499	Hero Super 108EC	PCL/1643/0 0814G September 2016	Haloxyfop-R- methyl ester (108g/l)	III	Herbicide for the control of annual grasses in vegetables and pulses	Kumark Co. Ltd., Kumasi
500	King Kong	PCL/16149/0 0806G August 2016	Glyphosate (480g/l)	III	Herbicide for the control of annual, perennial weeds and grasses in cereals, vegetables and fruit trees	Bon Agro Company Ltd., Kumasi.
501	Kodwooto 41SL	PCL/16129/0 0788G August 2016	Glyphosate (410g/l)	III	Herbicide for the control of broadleaf weeds and grasses in arable crops	Akwees Man Agrochemical Enterprise, Kumasi
502	Impact EC	PCL/17173/0 0893G February 2017	Haloxyfop (108g/l)	III	Post-emergent herbicide for the control of annual and perennial grasses in vegetables, groundnuts and soybean	Agromonti Co. Ltd., Accra
503	Manazone Super 20SL	PCL/16129/0 0789R August 2016	Paraquat dichloride (200g/l)	II	Herbicide for the control of broadleaf weeds and grasses in arable crops	Akwees Man Agrochemical Enterprise, Kumasi
504	Mega Super	PCL/1643/0 0815G September 2016	Bispyribac sodium (400g/l)	III	Herbicide for the control of annual grasses in rice	Kumark Co. Ltd., Kumasi
505	Mofarno 160EC	PCL/1608/00 830G October 2016	Quizalofop-p- methyl (35g/l)		Herbicide for the control of annual broadleaf weeds in soybean	Dizengoff Ghana Ltd., Accra
506	Pantera 40EC	PCL/1606/00 783G August 2016	Quizalofop-P- Tefuryl (40g/l)	III	Herbicide for the control of annual, perennial grasses in vegetable crops	Calli. Ghana Ltd., Tema
507	Paraeforce 20SL	PCL/17145/0 0879R February 2017	Paraquat dichloride (200g/l)	II	Herbicide for the control of grasses and broadleaf weeds in rice and vegetables	Jubaili Agrotec Ltd, Accra
508	Paraq SL	PCL/1726/00	Paraquat	II	Herbicide for control of	The Candel

889R	dichloride	broadleaf	weeds	and	Company Ltd.,
February	(24%)	grasses in arable crops		Accra	
2017					

No ·	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Haz ard Clas s	Uses	Local Distributor
509	Pendimethal in 400EC	PCL/1643/0 0816G September 2016	Pendimethalin (40%)	III	Herbicide for the control of annual grasses and broadleaf weeds in rice, maize, onion and cotton	Kumark Co. Ltd., Kumasi
510	Phyto- General 360SL	PCL/1726/00 890G February 2017	Glyphosate (360g/l)	III	Herbicide for control of annual, perennial broadleaf weeds and grasses in cereals and vegetables	The Candel Company Ltd., Accra
511	Raze 20SL	PCL/16186/0 0793R August 2016	Paraquat dichloride (200g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in arable crops	Ivorychem Co. Ltd., Kumasi
512	Rhemazone Super SL	PCL/1718/00 908R January 2017	Paraquat dichloride (200g/l)	II	Non-selective broad spectrum herbicide for the control of annual and perennial broadleaf weeds and grasses	Rhemaco Enterprise, Kumasi
513	Ricecare 240SC	PCL/1699/00 855G October 2016	Penoxsulam (240g/l)	IV	Herbicide for the control of broadleaf weeds and sedges in field crops	Rainbow Agrosciences Co. Ltd., Accra
514	Ridmax 510SL	PCL/1699/00 8851G October 2016	Glyphosate IPA (300g/l) + 2,4-D IPA (210g/l)	III	Herbicide for the control of annual, perennial weeds in field crops	Rainbow Agrosciences Co. Ltd., Accra
515	Riz-Diz	PCL/1608/00 831G October 2016	Bispyribac sodium (100g/l)	III	Herbicide for the control of annual broadleaf weeds and grasses in rice	Dizengoff Ghana Ltd., Accra
516	Sinopat 41SL	PCL/16166/0 0910G December 2016	Glyphosate (41%)	III	Herbicide for the control of annual and perennial grasses and broadleaf weeds.	Dasimah Enterprise, Adum-Kumasi
517	Sun-Aceto EC	PCL/1657/00 844G October 2016	Acetochlor (900g/l)	III	Herbicide for the control of annual and perennial weeds in maize, soybean, cotton and peanut	Wynca Sunshine Agric Prdt &Trad. Co. Ltd, Accra.
518	Target 240SL	PCL/1699/00 852G October 2016	Imazethapyr (240g/l)	III	Herbicide for the control of annual, perennial grasses and broadleaf weeds in soybean and cowpea	Rainbow Agrosciences Co. Ltd., Accra

519	United Force 360	PCL/17145/0 0896G February 2017	Glyphosate (240g/l) + 2,4-D Amine (120g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses	_
520	Viking 48SL	PCL/16186/0 0794G August 2016	Glyphosate (480g/l)	III	Herbicide for the control of annual, perennial broadleaf weeds and grasses in arable crops	•

No.	Trade Name	Registration	Concentration of	Hazar	Uses
		No. / Date of	Active Ingredient	d	
		Issue		Class	
521	Voila EC	PCL/1635/0079	Pretilachlor	III	Herbicide for the control of
		8G	(225g/l) +		annual, perennial broadleaf
		August 2016	Pyribenzoxim		weeds, sedges and grasses in rice
			(15g/l)		
522	Waano Waano	PCL/16190/008	Glyphosate (41%)	III	Herbicide for the control of
	41SL	70G			broadleaf weeds in arable crops
		December 2016			
523	Weedcut 20SL	PCL/16145/008	Paraquat dichloride	II	Herbicide for the control of
		80R	(200g/l)		grasses and broadleaf weeds in
		December 2016			rice and vegetables
524	Weedcut 20SL	PCL/16145/008	Paraquat dichloride	II	Herbicide for the control of
		80R	(200g/l)		grasses and broadleaf weeds in
		February 2017			rice and vegetables

(B) PROVISIONALLY CLEARED PESTICIDES (PCL)

(B4) Plant Growth Regulator

No.	Trade Name	Registration No. / Date of	Concentration of Active Ingredient	Hazard Class	Uses	Local Distributor
		Issue				
525	Atonik SL	PCL/1606/007	Sodium 0-	III	Plant	Calli Ghana
		86G	nitrophenolate		Growth	Ltd., Tema
		August 2016	(2g/l) + Sodium p-		Regulator to	
			nitrophenolate		improve	
			(3g/l) + Sodium s-		crop	
			nitroguaiacolate		developmen	
			(1g/l)		t in rice	
526	Sun-Mequat	PCL/1657/008	Chlormequat	III	Growth	Wynca
	SL	47G October	(50%)		Regulator in	Sunshine
		2016			anti-lodging	Agric Prdt
					of cotton	&Trad. Co.
						Ltd, Accra.

(B5) Nematicide

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Hazard Class	Uses	Local Distribut or
527	Nematox WP	PCL/1672/00863G October 2016	Paecilomyces lilacinus (1%)	III	Nematicide for the control of nematodes in rice, maize, pearl millet, citrus, soybean and tomato	Agrophar m West Africa Ltd., Tema
528	Vytal 3G	PCL/1606/00785G August 2016	Oxamyl (30g/kg)	II	Nematicide for the control of nematodes and soil insects in tomatoes	Calli Ghana Ltd., Tema

(B6) (Repellants)

No.	Trade Name	Registration No. / Date of Issue	Concentration of Active Ingredient	Hazard Class	Uses	Local Distributor
529	Bird Away SL	PCL/1657/00843 G October 2016	Methyl anthranilate (264g/l)	III	Bird repellent for the control of birds.	Wynca Sunshine Agro Products and Trading Company (Gh) Ltd., Accra

(B7) (Rodenticide)

No.	Trade Name	Registration No. / Date of Issue	ion of	Hazard Class	Uses	Local Distributor
			Active Ingredient			
530	Baraki RB	PCL/1602/00810	Bromadialo		Rodenticide	Agrimat
		R	ne (0.005%)		for the	Limited,
		August 2016			control of	Accra
					rats and mice	
531	Super	PCL/1602/00812	Bromadialo		Rodenticide	Agrimat
	Guard	R	ne (2.5%)		for the	Limited,
		August 2016			control of	Accra
					rats and mice	

(C) BANNED PESTICIDES

No	Name of Pesticide	
532	2,4,5-T and its salts and esters	

500	
533	Aldrin
534	Binapacryl
535	Captafol
536	Chlordane
537	Chlordimeform
538	Chlorobenzilate
539	Dichlorodiphenyltrichloroethane (DDT)
540	Dieldrin
541	Dinoseb and its salts and esters
542	Dinitro- <i>ortho</i> -cresol (DNOC) and its salts (such as ammonium salt, potassium salt and sodium salt)
543	Endrin
544	HCH (mixed isomers)
545	Heptachlor
546	Hexachlorobenzene
547	Parathion
548	Pentachlorophenol and its salts and esters
549	Toxaphene
550	Mirex
551	Methamidophos (Soluble liquid formulations of the substance that exceed 600 g active ingredient/l)
552	Methyl-parathion (emulsifiable concentrates (EC) with at or above 19.5% active ingredient and dusts at or above 1.5% active ingredient)
553	Monocrotophos (Soluble liquid formulations of the substance that exceed 600 g active ingredient/l)
554	Parathion (all formulations - aerosols, dustable powder (DP), emulsifiable concentrate (EC), granules (GR) and wettable powders (WP) - of this substance are included, except capsule suspensions (CS))
555	Phosphamidon (Soluble liquid formulations of the substance that exceed 1000 g active ingredient/l)
556	Dustable powder formulations containing a combination of Benomyl at or above 7%, Carbofuran at or above 10% and Thiram at or above 15%
557	Methyl Bromide
558	Chlordecone
559	Alpha hexachlorocyclohexane
560	Beta hexachlorocyclohexane
561	Lindane
562	Pentachlorobenzene
563	Technical Endosulfan and its related isomers

Summary of Register of Pesticides as at February 2017

Category	FRE	PCL	Banned	Total
Insecticides	153	51	32	236

Fungicides	59	15	0	74
Herbicides	173	50	0	223
Plant Growth				
Regulators	8	2	0	10
Molluscicide	1	0	0	1
Rodenticides	0	2	0	2
Nematicides	4	2	0	6
Adjuvants	5	0	0	5
Biocides	11	0	0	11
Repellents	0	1	0	1
Total	414	123	32	569

Legend to Register of Pesticide

FRE - Full Registration (valid for 3 years)	The Agency may approve and register a pesticide subject to such other conditions as it may determine and may only register a pesticide if it is satisfied that the pesticide is safe and effective for the use for which it is intended and that the pesticide has been tested for efficacy and safety under local conditions (Section 31, Part II of Act 490)
PCL - Provisional Clearance Permit (Valid for a maximum of 1 year)	Where in respect of an application for registration of a pesticide, the Agency is satisfied that most information required for its registration has been provided to the Agency, and the pesticide does not present a toxicological risk to people, animals, crops or the environment, it may clear the pesticide for use without the registration, and this clearance shall be known as provisional clearance and shall be temporary pending the registration by the Agency of the pesticide (Section 32, Part II of Act 490)
Experimental permit	The Agency may authorize the importation of unregistered pesticide if the pesticide is imported for experimental or research purposes and not for distribution Section 28, (2), (a), (i).
General use pesticides (G)	Pesticides when applied for the use for which it is registered will not have unreasonable adverse effects on people, animals, crops or on the environment (Section 30 (1), (a) of Part II of Act 490)
Restricted use pesticides (R)	Pesticide when used in accordance with widespread commonly recognized practice in the absence of additional regulatory restrictions may cause unreasonable adverse effect on people, animals, crops or on the environment (section 30 (1), (b) of Part II of Act 490). Such pesticides are restricted for use on only selected crops by competent pesticide applicators and should be sold by dealers licensed to handle restricted pesticides

Suspended	or	Pesticide when used in accordance with widespread commonly
Banned		recognized practice even in the presence of additional regulatory
Pesticides		restrictions will cause unreasonable adverse effect on people, animals,
		crops or on the environment. Such pesticides are prohibited for use in
		the country (Section 30, (1), (c).